【題目】已知橢圓C: =1(a>b>0)過點A ,離心率為 ,點F1 , F2分別為其左右焦點.
(1)求橢圓C的標準方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點P,Q,且 ?若存在,求出該圓的方程;若不存在,請說明理由.
【答案】
(1)解:由題意得: ,得b=c,因為 ,
得c=1,所以a2=2,
所以橢圓C方程為
(2)解:假設滿足條件的圓存在,其方程為:x2+y2=r2(0<r<1)
當直線PQ的斜率存在時,設直線方程為y=kx+b,
由 得(1+2k2)x2+4bkx+2b2﹣2=0,
令P(x1,y1),Q(x2,y2),
,
∵ ,∴x1x2+y1y2=0.
∴ ,
∴3b2=2k2+2
因為直線PQ與圓相切,∴ =
所以存在圓
當直線PQ的斜率不存在時,也適合x2+y2= .
綜上所述,存在圓心在原點的圓x2+y2= 滿足題意
【解析】(1)由離心率,推出b=c,利用橢圓經(jīng)過的點的坐標,代入橢圓方程,求出a、b,即可得到橢圓C方程.(2)假設滿足條件的圓存在,其方程為:x2+y2=r2(0<r<1),當直線PQ的斜率存在時,設直線方程為y=kx+b,聯(lián)立方程組,令P(x1 , y1),Q(x2 , y2),利用韋達定理,結合x1x2+y1y2=0.推出3b2=2k2+2,利用直線PQ與圓相切,求出圓的半徑,得到圓的方程,判斷當直線PQ的斜率不存在時的圓的方程,即可得到結果.
【考點精析】本題主要考查了橢圓的標準方程的相關知識點,需要掌握橢圓標準方程焦點在x軸:,焦點在y軸:才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設m, n是兩條不同的直線,是三個不同的平面, 給出下列四個命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,某街道居委會擬在EF地段的居民樓正南方向的空白地段AE上建一個活動中心,其中AE長為30米.活動中心東西走向,與居民樓平行.從東向西看活動中心的截面圖的下部分是長方形ABCD,上部分是以DC為直徑的半圓.為了保證居民樓住戶的采光要求,活動中心在與半圓相切的太陽光線照射下落在居民樓上的影長GE不超過2.5米,其中該太陽光線與水平線的夾角θ滿足tan θ=.
(1)若設計AB=18米,AD=6米,問能否保證上述采光要求?
(2)在保證上述采光要求的前提下,如何設計AB與AD的長度,可使得活動中心的截面面積最大? (注:計算中π取3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知極坐標系的極點在直角坐標系的原點處,極軸與x軸的正半軸重合,直線l的極坐標方程為: ,曲線C的參數(shù)方程為: (α為參數(shù)).
(1)寫出直線l的直角坐標方程;
(2)求曲線C上的點到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:,直線 ,過的一條動直線與直線相交于N,與圓C相交于P,Q兩點,M是PQ中點.
(1)當時,求直線的方程;
(2)設,試問是否為定值,若為定值,請求出的值;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=m﹣|2x+1|﹣|2x﹣3|,若x0∈R,不等式f(x0)≥0成立,
(1)求實數(shù)m的取值范圍;
(2)若x+2y﹣m=6,是否存在x,y,使得x2+y2=19成立,若存在,求出x,y值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】遂寧市觀音湖港口船舶?康姆桨甘窍鹊较韧#
(1)若甲乙兩艘船同時到達港口,雙方約定各派一名代表從1,2,3,4,5中各隨機選一個數(shù)(甲、乙選取的數(shù)互不影響),若兩數(shù)之和為偶數(shù),則甲先?浚蝗魞蓴(shù)之和為奇數(shù),則乙先?浚@種規(guī)則是否公平?請說明理由.
(2)根據(jù)以往經(jīng)驗,甲船將于早上7:00~8:00到達,乙船將于早上7:30~8:30到達,請求出甲船先停靠的概率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com