已知橢圓的左焦點(diǎn)為,右焦點(diǎn)為

(Ⅰ)設(shè)直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn)P,線段的垂直平分線交于點(diǎn)M,求點(diǎn)M的軌跡的方程;
(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),取曲線上不同于的點(diǎn),以為直徑作圓與相交另外一點(diǎn),求該圓的面積最小時(shí)點(diǎn)的坐標(biāo).
(Ⅰ)(Ⅱ).

試題分析:(Ⅰ) 利用拋物線的定義“到定點(diǎn)的距離等于到定直線的距離”來求;(Ⅱ)直線與拋物線相交,聯(lián)立消元,設(shè)點(diǎn)代入化簡(jiǎn),利用基本不等式求最值.
試題解析:(I)在線段的垂直平分線上,∴| MP | =" |" M |
故動(dòng)點(diǎn)M到定直線的距離等于它到定點(diǎn)的距離
因此動(dòng)點(diǎn)M的軌跡是以為準(zhǔn)線,為焦點(diǎn)的拋物線,
所以點(diǎn)M的軌跡的方程為  
(II)因?yàn)橐設(shè)S為直徑的圓與相交于點(diǎn)R,
所以,即
設(shè),,則
,,
所以,即
,,∴
,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立
當(dāng)時(shí),,圓的直徑,
這時(shí)點(diǎn)S的坐標(biāo)為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A(-5,0),B(5,0),動(dòng)點(diǎn)P滿足||,|,8成等差數(shù)列.
(1)求P點(diǎn)的軌跡方程;
(2)對(duì)于x軸上的點(diǎn)M,若滿足||·||=,則稱點(diǎn)M為點(diǎn)P對(duì)應(yīng)的“比例點(diǎn)”.問:對(duì)任意一個(gè)確定的點(diǎn)P,它總能對(duì)應(yīng)幾個(gè)“比例點(diǎn)”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知分別是橢圓的左、右焦點(diǎn),橢圓的離心率
(I)求橢圓的方程;(II)已知直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).求證:以線段為直徑的圓恒過定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

經(jīng)過點(diǎn)且與直線相切的動(dòng)圓的圓心軌跡為.點(diǎn)在軌跡上,且關(guān)于軸對(duì)稱,過線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使直線與軌跡在點(diǎn)處的切線平行,設(shè)直線與軌跡交于點(diǎn).
(1)求軌跡的方程;
(2)證明:;
(3)若點(diǎn)到直線的距離等于,且的面積為20,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知定點(diǎn)A(-2,0)、B(2,0),異于A、B兩點(diǎn)的動(dòng)點(diǎn)P滿足,其中k1、k2分別表示直線AP、BP的斜率.

(Ⅰ)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點(diǎn)B的任意一點(diǎn),直線AN與(I)中軌跡E交予點(diǎn)Q,設(shè)直線QB與以NB為直徑的圓的一個(gè)交點(diǎn)為M(異于點(diǎn)B),點(diǎn)C(1,0),求證:|CM|·|CN| 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,曲線上任意一點(diǎn)分別與點(diǎn)、連線的斜率的乘積為
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)直線軸、軸分別交于兩點(diǎn),若曲線與直線沒有公共點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等邊中,若以為焦點(diǎn)的橢圓經(jīng)過點(diǎn),則該橢圓的離心率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是拋物線的焦點(diǎn),、是該拋物線上的兩點(diǎn),且,則線段的中點(diǎn)到軸的距離為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若橢圓C:的離心率e為, 且橢圓C的一個(gè)焦點(diǎn)與拋物線y2=-12x的焦點(diǎn)重合.
(1) 求橢圓C的方程;
(2) 設(shè)點(diǎn)M(2,0), 點(diǎn)Q是橢圓上一點(diǎn), 當(dāng)|MQ|最小時(shí), 試求點(diǎn)Q的坐標(biāo);
(3) 設(shè)P(m,0)為橢圓C長(zhǎng)軸(含端點(diǎn))上的一個(gè)動(dòng)點(diǎn), 過P點(diǎn)斜率為k的直線l交橢圓與
A,B兩點(diǎn), 若|PA|2+|PB|2的值僅依賴于k而與m無關(guān), 求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案