已知
,曲線
上任意一點(diǎn)
分別與點(diǎn)
、
連線的斜率的乘積為
.
(Ⅰ)求曲線
的方程;
(Ⅱ)設(shè)直線
與
軸、
軸分別交于
、
兩點(diǎn),若曲線
與直線
沒有公共點(diǎn),求證:
.
(Ⅰ)
,
.
(Ⅱ)由
得
,利用曲線
與直線
沒有公共點(diǎn),
,得到
,利用
,
,及均值定理確定
,
從而證得
.
試題分析:(Ⅰ)設(shè)曲線
上任意一點(diǎn)
的坐標(biāo)為
.利用依題意點(diǎn)
分別與點(diǎn)
、
連線的斜率的乘積為
,轉(zhuǎn)化成代數(shù)式,整理可得
.
(Ⅱ)由
得
,利用曲線
與直線
沒有公共點(diǎn),
,得到
,利用
,
,及均值定理確定
,
從而證得
.
試題解析:(Ⅰ)設(shè)曲線
上任意一點(diǎn)
的坐標(biāo)為
.
依題意
,且
, 3分
整理得
.所以,曲線
的方程為:
,
. 5分
(Ⅱ)由
得
,
, 7分
由已知條件可知
,
,所以
,
從而
, 即
. 13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
的左焦點(diǎn)為
,右焦點(diǎn)為
.
(Ⅰ)設(shè)直線
過點(diǎn)
且垂直于橢圓的長軸,動(dòng)直線
垂直
于點(diǎn)P,線段
的垂直平分線交
于點(diǎn)M,求點(diǎn)M的軌跡
的方程;
(Ⅱ)設(shè)
為坐標(biāo)原點(diǎn),取曲線
上不同于
的點(diǎn)
,以
為直徑作圓與
相交另外一點(diǎn)
,求該圓的面積最小時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知一條曲線
在
軸右邊,
上每一點(diǎn)到點(diǎn)
的距離減去它到
軸距離的差都等于1.
(1)求曲線C的方程;
(2)若過點(diǎn)M
的直線
與曲線C有兩個(gè)交點(diǎn)
,且
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知F
1、F
2分別是雙曲線
的左、右焦點(diǎn),P為雙曲線右支上的任意一點(diǎn)且
,則雙曲線離心率的取值范圍是( )
A.(1,2] | B.[2 +) | C.(1,3] | D.[3,+) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
中心為
, 一個(gè)焦點(diǎn)為
的橢圓,截直線
所得弦中點(diǎn)的橫坐標(biāo)為
,則該橢圓方程是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若拋物線
上一點(diǎn)
到焦點(diǎn)
的距離為4,則點(diǎn)
的橫坐標(biāo)為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓
的離心率為
,
是其左右頂點(diǎn),
是橢圓上位于
軸兩側(cè)的點(diǎn)(點(diǎn)
在
軸上方),且四邊形
面積的最大值為4.
(1)求橢圓方程;
(2)設(shè)直線
的斜率分別為
,若
,設(shè)△
與△
的面積分別為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線
的頂點(diǎn)到漸進(jìn)線的距離等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
,
分別是雙曲線
:
的兩個(gè)焦點(diǎn),雙曲線
和圓
:
的一個(gè)交點(diǎn)為
,且
,那么雙曲線
的離心率為 ( )
查看答案和解析>>