【題目】某地植被面積 (公頃)與當(dāng)?shù)貧鉁叵陆档亩葦?shù))之間有如下的對(duì)應(yīng)數(shù)據(jù):

(公頃)

20

40

50

60

80

3

4

4

4

5

(1)請(qǐng)用最小二乘法求出關(guān)于的線性回歸方程

(2)根據(jù)(1)中所求線性回歸方程,如果植被面積為200公頃,那么下降的氣溫大約是多少?

參考公式:用最小二乘法求線性回歸方程系數(shù)公式:

【答案】;⑵

【解析】

1)由題先求出五對(duì)數(shù)據(jù)的平均數(shù),求出年份和人口數(shù)的平均數(shù),得到樣本中心點(diǎn),把所給的數(shù)據(jù)代入公式,利用最小二乘法求出線性回歸方程的系數(shù),再求出a的值,進(jìn)而可得解;(2)把當(dāng)x200時(shí),代入線性回歸方程,得到8.5°C,即下降的氣溫大約是8.5°C

解:(1,

所以

y關(guān)于x的線性回歸方程

2)由(1)得:當(dāng)x200時(shí),

所以植被面積為200公頃時(shí),下降的氣溫大約是8.5°C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)

⑴若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;

⑵當(dāng),求函數(shù)的最小值

⑶是否存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>?若存在,求出的值;若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】=2sinωx+φ),x∈R,其中ω0,﹣πφ≤π.若函數(shù)fx)的最小正周期為,且當(dāng)x=時(shí),fx)取得最大值,則( )

A. fx)在區(qū)間[﹣2π,0]上是增函數(shù)B. fx)在區(qū)間[﹣3π,﹣π]上是增函數(shù)

C. fx)在區(qū)間[3π,5π]上是減函數(shù)D. fx)在區(qū)間[4π,6π]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,橢圓的四個(gè)頂點(diǎn)圍成的四邊形的面積為4.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)直線與橢圓交于, 兩點(diǎn), 的中點(diǎn)在圓上,求為坐標(biāo)原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,所對(duì)的邊分別為,,,過(guò)作直線與邊相交于點(diǎn),.當(dāng)直線時(shí),值為;當(dāng)為邊的中點(diǎn)時(shí),值為.當(dāng)變化時(shí),記(即、中較大的數(shù)),則的最小值為(

A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的函數(shù)為其導(dǎo)數(shù),且恒成立,則(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形的兩條對(duì)角線相交于點(diǎn) 邊所在直線的方程為,點(diǎn)邊所在的直線上.

(Ⅰ)求邊所在直線的方程;

(Ⅱ)求矩形外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠利用隨機(jī)數(shù)表對(duì)生產(chǎn)的600個(gè)零件進(jìn)行抽樣測(cè)試,先將600個(gè)零件進(jìn)行編號(hào),編號(hào)分別為001,002,599,600從中抽取60個(gè)樣本,如下提供隨機(jī)數(shù)表的第4行到第6行:

32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42

84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04

32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45

若從表中第6行第6列開(kāi)始向右依次讀取3個(gè)數(shù)據(jù),則得到的第6個(gè)樣本編號(hào)  

A. 522B. 324C. 535D. 578

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求圓的普通方程和直線的直角坐標(biāo)方程;

(2)若直線與圓交于兩點(diǎn),是圓上不同于兩點(diǎn)的動(dòng)點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案