【題目】=2sinωx+φ),x∈R,其中ω0,﹣πφ≤π.若函數(shù)fx)的最小正周期為,且當(dāng)x=時,fx)取得最大值,則( )

A. fx)在區(qū)間[﹣2π,0]上是增函數(shù)B. fx)在區(qū)間[﹣3π,﹣π]上是增函數(shù)

C. fx)在區(qū)間[3π,5π]上是減函數(shù)D. fx)在區(qū)間[4π,6π]上是減函數(shù)

【答案】A

【解析】

試題由函數(shù)fx)的最小正周期為,根據(jù)周期公式可得ω=,且當(dāng)x=時,fx)取得最大值,代入可得,2sinφ=2,結(jié)合已知﹣πφ≤π可得φ=可得,分別求出函數(shù)的單調(diào)增區(qū)間和減區(qū)間,結(jié)合選項驗證即可

解:函數(shù)fx)的最小正周期為,根據(jù)周期公式可得ω=,

∴fx=2sinφ),

當(dāng)x=時,fx)取得最大值,∴2sinφ=2,

∵﹣πφ≤π∴φ=,,

可得函數(shù)的單調(diào)增區(qū)間:,

可得函數(shù)的單調(diào)減區(qū)間:,

結(jié)合選項可知A正確,

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面.

1)求平面與平面所成二面角的大;

2)設(shè)棱的中點為,求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面推理過程中使用了類比推理方法,其中推理正確的個數(shù)是

①“數(shù)軸上兩點間距離公式為平面上兩點間距離公式為”,類比推出“空間內(nèi)兩點間的距離公式為“;

②“代數(shù)運算中的完全平方公式”類比推出“向量中的運算仍成立“;

③“平面內(nèi)兩不重合的直線不平行就相交”類比到空間“空間內(nèi)兩不重合的直線不平行就相交“也成立;

④“圓上點處的切線方程為”,類比推出“橢圓 上點處的切線方程為”.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】207年8月8日晚我國四川九賽溝縣發(fā)生了7.0級地震為了解與掌握一些基本的地震安全防護知識,某小學(xué)在9月份開學(xué)初對全校學(xué)生進行了為期一周的知識講座,事后并進行了測試(滿分100分),根據(jù)測試成績評定為“合格”(60分以上包含60分)、“不合格”兩個等級,同時對相應(yīng)等級進行量化:“合格”定為10分,“不合格”定為5分.現(xiàn)隨機抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如圖所示:

等級

不合格

合格

得分

頻數(shù)

6

24

(1)求的值;

(2)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進行座談,現(xiàn)再從這10人中任選4人記所選4人的量化總分為,的分布列及數(shù)學(xué)期望

(3)設(shè)函數(shù)(其中表示的方差)是評估安全教育方案成效的一種模擬函數(shù).當(dāng)時,認定教育方案是有效的;否則認定教育方案應(yīng)需調(diào)整,試以此函數(shù)為參考依據(jù).在(2)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的圖像上存在兩點,使得函數(shù)的圖像在這兩點處的切線互相垂直,則稱具有性質(zhì).下列函數(shù)中具有性質(zhì)的是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱如圖所示,并要求正四棱柱的高是正四棱錐的高的4倍.

1則倉庫的容積是多少?

2若正四棱錐的側(cè)棱長為,則當(dāng)為多少時,倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點,曲線的參數(shù)方程為 (為參數(shù)).

(Ⅰ)求曲線上的點到直線的距離的最大值;

(Ⅱ)過點與直線平行的直線與曲線 交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地植被面積 (公頃)與當(dāng)?shù)貧鉁叵陆档亩葦?shù))之間有如下的對應(yīng)數(shù)據(jù):

(公頃)

20

40

50

60

80

3

4

4

4

5

(1)請用最小二乘法求出關(guān)于的線性回歸方程;

(2)根據(jù)(1)中所求線性回歸方程,如果植被面積為200公頃,那么下降的氣溫大約是多少?

參考公式:用最小二乘法求線性回歸方程系數(shù)公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年11月、12月全國大范圍流感爆發(fā),為研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,一興趣小組抄錄了某醫(yī)院11月到12月間的連續(xù)6個星期的晝夜溫差情況與因患感冒而就診的人數(shù)得到如下資料:

日期

第一周

第二周

第三周

第四周

第五周

第六周

晝夜溫差x(°C)

10

11

13

12

8

6

就診人數(shù)y(個)

22

25

29

26

16

12

該興趣小組確定的研究方案是先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程再用被選取的2組數(shù)據(jù)進行檢驗。

(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個星期的概率;

(Ⅱ)若選取的是第一周與第六周的兩組數(shù)據(jù),請根據(jù)第二周到第五周的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考公式: )

參考數(shù)據(jù): 1092, 498

查看答案和解析>>

同步練習(xí)冊答案