【題目】某學校一位教師要去某地參加全國數(shù)學優(yōu)質(zhì)課比賽,已知他乘火車、輪船、汽車、飛機直接去的概率分別為0.3、0.1、0.2、0.4.
(1)求他乘火車或乘飛機去的概率;
(2)他不乘輪船去的概率;
【答案】(1)0.7(2)0.9
【解析】
試題設(shè)“乘火車去開會”為事件A,“乘輪船去開會”為事件B,“乘汽車去開會”為事件C,“乘飛機去開會”為事件D,并且根據(jù)題意可得:這四個事件是互斥事件,(1)根據(jù)概率的基本性質(zhì)公式可得:P(A+D)=P(A)+P(D).(2)根據(jù)對立事件的概率公式可得他不乘輪船去的概率P=1-P(B).
記A=“他乘火車去”,B=“他乘輪船去”,C=“他乘汽車去”,D=“他乘飛機去”,由題意可知:P(A)=0.3,P(B)=0.1,P(C)=0.2,P(D)=0.4,且事件A、B、C、D兩兩互斥.
(1)“他乘火車或乘飛機去”即為事件A∪D.P(A∪D)=P(A)+P(D)=0.3+0.4=0.7,即他乘火車或乘飛機去的概率為0.7;(2)“他不乘輪船去”的事件為,所以P()=1-P(B)=1-0.1=0.9,即他不乘輪船去的概率為0.9.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖像如圖所示,關(guān)于有以下5個結(jié)論:
(1);(2),;(3)將圖像上所有點向右平移個單位得到的圖形所對應的函數(shù)是偶函數(shù);(4)對于任意實數(shù)x都有;(5)對于任意實數(shù)x都有;其中所有正確結(jié)論的編號是( )
A.(1)(2)(3)B.(1)(2)(4)(5)C.(1)(2)(4)D.(1)(3)(4)(5)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一張矩形白紙ABCD,AB=10,AD=,E,F分別為AD,BC的中點,現(xiàn)分別將△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同側(cè),下列命題正確的是____________(寫出所有正確命題的序號)
①當平面ABE∥平面CDF時,AC∥平面BFDE
②當平面ABE∥平面CDF時,AE∥CD
③當A、C重合于點P時,PG⊥PD
④當A、C重合于點P時,三棱錐P-DEF的外接球的表面積為150
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義域為的偶函數(shù),且滿足,當時,,則函數(shù)在區(qū)間上零點的個數(shù)為( )
A.9B.10C.18D.20
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線上的點均在曲線外,且對上任意一點,到直線的距離等于該點與曲線上點的距離的最小值.
(1)求動點的軌跡的方程;
(2)若點是曲線的焦點,過的兩條直線關(guān)于軸對稱,且分別交曲線于,若四邊形的面積等于,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=,an+1=3an-1(n∈N*).
(1)若數(shù)列{bn}滿足bn=an-,求證:{bn}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),在點處的切線方程為,求(1)實數(shù)的值;(2)函數(shù)的單調(diào)區(qū)間以及在區(qū)間上的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com