【題目】已知函數(shù)是定義域為的偶函數(shù),且滿足,當(dāng)時,,則函數(shù)在區(qū)間上零點的個數(shù)為( )
A.9B.10C.18D.20
【答案】B
【解析】
由已知可得函數(shù)f(x)的周期與對稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.
函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),
由f(x)=f (2﹣x),得函數(shù)f(x)圖象關(guān)于x=1對稱,
∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.
又∵當(dāng)x∈[0,1]時,f(x)=x,且f(x)為偶函數(shù),∴當(dāng)x∈[﹣1,0]時,f(x)=﹣x,
g(x),
作出函數(shù)f(x)與g(x)的圖象如圖:
由圖可知,兩函數(shù)圖象共10個交點,
即函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)為10.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進(jìn)行視力調(diào)查。
(I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。
(II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,
(1)列出所有可能的抽取結(jié)果;
(2)求抽取的2所學(xué)校均為小學(xué)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從4名書法比賽一等獎的同學(xué)和2名繪畫比賽一等獎的同學(xué)中選出2名志愿者,參加某項服務(wù)工作.
(1)求選出的兩名志愿者都是獲得書法比賽一等獎的同學(xué)的概率;
(2)求選出的兩名志愿者中一名是獲得書法比賽一等獎,另一名是獲得繪畫比賽一等獎的同學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為多面體,平面與平面垂直,點在線段上, 都是正三角形.
(1)證明:直線∥面;
(2)在線段上是否存在一點,使得二面角的余弦值是,若不存在請說明理由,若存在請求出點所在的位置。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校一位教師要去某地參加全國數(shù)學(xué)優(yōu)質(zhì)課比賽,已知他乘火車、輪船、汽車、飛機(jī)直接去的概率分別為0.3、0.1、0.2、0.4.
(1)求他乘火車或乘飛機(jī)去的概率;
(2)他不乘輪船去的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間直角坐標(biāo)系O﹣xyz中,已知正四棱錐P﹣ABCD的所有棱長均為6,底面正方形ABCD的中心在坐標(biāo)原點,棱AD,BC平行于x軸,AB,CD平行于y軸,頂點P在z軸的正半軸上,點M,N分別在線段PA,BD上,且.
(1)求直線MN與PC所成角的大;
(2)求銳二面角A﹣PN﹣D的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com