【題目】若不等式x2+ax+1≥0對一切x∈(0, ]成立,則a的最小值是 .
【答案】-2
【解析】解:不等式x2+ax+1≥0對一切x∈(0, ]成立,
∴ax≥﹣x2﹣1,
即a≥﹣x﹣ =﹣(x+ );
由x∈(0, ],
∴x+ ≥2 =2,當且僅當x=1時“=”成立,
即﹣(x+ )的最大值是﹣2;
∴a的最小值是﹣2.
所以答案是:﹣2.
【考點精析】掌握解一元二次不等式是解答本題的根本,需要知道求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)在一個周期內(nèi)的圖象如圖所示,則函數(shù)的解析式為 . 直線y= 與函數(shù)y=f(x)(x∈R)圖象的所有交點的坐標為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是等邊三角形,邊長為4, 邊的中點為,橢圓以, 為左、右兩焦點,且經(jīng)過、兩點。
(1)求該橢圓的標準方程;
(2)過點且軸不垂直的直線交橢圓于, 兩點,求證:直線與的交點在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠商調(diào)查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機的“星級賣場”.
(1)求在這10個賣場中,甲型號電視機的“星級賣場”的個數(shù);
(2)若在這10個賣場中,乙型號電視機銷售量的平均數(shù)為26.7,求a>b的概率;
(3)若a=1,記乙型號電視機銷售量的方差為,根據(jù)莖葉圖推斷b為何值時,達到最值.
(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某地區(qū)兒童的身高與體重的一組數(shù)據(jù),我們用兩種模型①,②擬合,得到回歸方程分別為, ,作殘差分析,如表:
身高 | 60 | 70 | 80 | 90 | 100 | 110 |
體重 | 6 | 8 | 10 | 14 | 15 | 18 |
0.41 | 0.01 | 1.21 | -0.19 | 0.41 | ||
-0.36 | 0.07 | 0.12 | 1.69 | -0.34 | -1.12 |
(Ⅰ)求表中空格內(nèi)的值;
(Ⅱ)根據(jù)殘差比較模型①,②的擬合效果,決定選擇哪個模型;
(Ⅲ)殘差大于的樣本點被認為是異常數(shù)據(jù),應(yīng)剔除,剔除后對(Ⅱ)所選擇的模型重新建立回歸方程.
(結(jié)果保留到小數(shù)點后兩位)
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知f(A)=2,b=1,△ABC的面積為 ,求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某顏料公司生產(chǎn)、兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過噸、噸、噸,如果產(chǎn)品的利潤為元/噸, 產(chǎn)品的利潤為元/噸,則該顏料公司一天內(nèi)可獲得的最大利潤為( )
A. 元 B. 元 C. 元 D. 元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com