【題目】已知雙曲線的一個(gè)焦點(diǎn)是,且
(1)求雙曲線的方程
(2)設(shè)經(jīng)過焦點(diǎn)的直線的一個(gè)法向量為,當(dāng)直線與雙曲線的右支相交于不同的兩點(diǎn)時(shí),求實(shí)數(shù)的取值范圍
(3)設(shè)(2)中直線與雙曲線的右支相交于兩點(diǎn),問是否存在實(shí)數(shù),使得為銳角?若存在,請(qǐng)求出的范圍;若不存在,請(qǐng)說明理由
【答案】(1);(2)或;(3)不存在,證明見解析
【解析】
(1)直接根據(jù)題意計(jì)算得到得到答案.
(2)計(jì)算漸近線方程為,根據(jù)直線方程與漸近線的關(guān)系得到答案.
(3)假設(shè)存在,為銳角,即,利用韋達(dá)定理得到
,解得,不成立.
(1)雙曲線的一個(gè)焦點(diǎn)是,且
則 解得 故雙曲線方程為
(2)漸近線方程為:
經(jīng)過焦點(diǎn)的直線的一個(gè)法向量為,則直線方程為:
直線與雙曲線的右支相交于不同的兩點(diǎn)
則滿足或,解得:或
(3)假設(shè)存在,則為銳角,即 ,設(shè)
得到
代入化簡(jiǎn)得到: 即
這與或矛盾,假設(shè)不成立.
故不存在這樣的
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,是棱上的一點(diǎn).
(1)證明:平面;
(2)若平面,求的值;
(3)在(2)的條件下,三棱錐的體積是18,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:=1(a>b>0)的左右焦點(diǎn)分別為F1,F2,焦距為2,一條準(zhǔn)線方程為x=2.P為橢圓C上一點(diǎn),直線PF1交橢圓C于另一點(diǎn)Q.
(1)求橢圓C的方程;
(2)若點(diǎn)P的坐標(biāo)為(0,b),求過點(diǎn)P,Q,F2三點(diǎn)的圓的方程;
(3)若=,且λ∈[],求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年六、七月份,我國長(zhǎng)江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)年10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計(jì)總體概率,解答下列問題:
假設(shè)每年的梅雨季節(jié)天氣相互獨(dú)立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.
老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量畝與降雨量之間的關(guān)系如下面統(tǒng)計(jì)表所示,又知乙品種楊梅的單位利潤為元,請(qǐng)你幫助老李分析,他來年應(yīng)該種植哪個(gè)品種的楊梅可以使總利潤萬元的期望更大?并說明理由.
降雨量 | ||||
畝產(chǎn)量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn)是直線l:上的動(dòng)點(diǎn),若在圓C上總存在不同的兩點(diǎn)A,B使得,則的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列 中,已知 ,為常數(shù).
(1)證明: 成等差數(shù)列;
(2)設(shè) ,求數(shù)列的前n項(xiàng)和 ;
(3)當(dāng)時(shí),數(shù)列 中是否存在不同的三項(xiàng)成等比數(shù)列,
且也成等比數(shù)列?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半圓:,、分別為半圓與軸的左、右交點(diǎn),直線過點(diǎn)且與軸垂直,點(diǎn)在直線上,縱坐標(biāo)為,若在半圓上存在點(diǎn)使,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,底面是邊長(zhǎng)為4的正三角形,,底面,點(diǎn)分別為,的中點(diǎn).
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),使得直線與平面所成的角的正弦值為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com