已知函數(shù)是增函數(shù),在(0,1)為減函數(shù).
(I)求、的表達(dá)式;
(II)求證:當(dāng)時(shí),方程有唯一解;
(Ⅲ)當(dāng)時(shí),若內(nèi)恒成立,求的取值范圍.

(I)(II)由(1)可知,方程,
設(shè),
,并由解知;(III)

解析試題分析:(I)依題意,即,.
∵上式恒成立,∴  ①                 …………………………1分
,依題意,即,.
∵上式恒成立,∴   ②                …………………………2分
由①②得.                     …………………………3分
            …………………………4分
(II)由(1)可知,方程,
設(shè),
,并由解知  ………5分
                 …………………………6分
列表分析:


(0,1)
1
(1,+¥)

-
0
+

遞減
0
遞增
處有一個(gè)最小值0,            …………………………7分
當(dāng)時(shí),>0,∴在(0,+¥)上只有一個(gè)解.
即當(dāng)x>0時(shí),方程有唯一解.   ……………………8分
(III)設(shè), ……9分
為減函數(shù) 又     …………11分
所以:為所求范圍.               ………………12分
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):導(dǎo)數(shù)的應(yīng)用是高考的一個(gè)重點(diǎn),利用導(dǎo)數(shù)求最值及判斷函數(shù)的單調(diào)性比用定義法要簡(jiǎn)單的多,要注意利用這個(gè)工具

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題共8分)
提高二環(huán)路的車輛通行能力可有效改善整個(gè)城區(qū)的交通狀況,在一般情況下,二環(huán)路上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù)。當(dāng)二環(huán)路上的車流密度達(dá)到600輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)60輛/千米時(shí),車流速度為80千米/小時(shí),研究表明:當(dāng)60≤x≤600時(shí),車流速度v是車流密度x的一次函數(shù)。
(Ⅰ)當(dāng)0≤x≤600時(shí),求函數(shù)f(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)二環(huán)路上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x·v(x)可以達(dá)到最大,并求出最大值。(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)為常數(shù),且)滿足條件:,且方程有兩個(gè)相等的實(shí)數(shù)根.
(1)求的解析式;
(2)求函數(shù)在區(qū)間上的最大值和最小值;
(3)是否存在實(shí)數(shù)使的定義域和值域分別為,如果存在,求出的值,如不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖建立平面直角坐標(biāo)系,軸在地平面上,軸垂直于地平面,單位長(zhǎng)度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在表示的曲線上,其中與發(fā)射方向有關(guān),炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).

(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大。滹w行高度為3.2千米,試問(wèn)它的橫坐標(biāo)不超過(guò)多少時(shí),炮彈可以擊中它?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(滿分12分)
已知二次函數(shù)滿足:,且
解集為
(1)求的解析式;
(2)設(shè),若上的最小值為-4,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)設(shè)函數(shù),且,,求證:(1)
(2)函數(shù)在區(qū)間內(nèi)至少有一個(gè)零點(diǎn);
(3)設(shè)是函數(shù)的兩個(gè)零點(diǎn),則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠每天生產(chǎn)某種產(chǎn)品最多不超過(guò)40件,并且在生產(chǎn)過(guò)程中產(chǎn)品的正品率與每日生產(chǎn)產(chǎn)品件數(shù)()間的關(guān)系為,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.
(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%)
(1)將日利潤(rùn)(元)表示成日產(chǎn)量(件)的函數(shù);
(2)求該廠的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?并求出日利潤(rùn)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)(1)計(jì)算: 
(2)化簡(jiǎn):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知函數(shù)在點(diǎn)處取得極小值-4,使其導(dǎo)函數(shù)的取值范圍為(1,3)
(Ⅰ)求的解析式及的極大值;
(Ⅱ)當(dāng)時(shí),求的最大值。

查看答案和解析>>

同步練習(xí)冊(cè)答案