【題目】基于移動網(wǎng)絡技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風靡全國,給人們帶來新的出行體驗,某共享單車運營公司的市場研究人員為了了解公司的經(jīng)營狀況,對公司最近6個月的市場占有率進行了統(tǒng)計,結(jié)果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)請用相關(guān)系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請計算出關(guān)于的線性回歸方程,如果不能,請說明理由;
(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:
車型 報廢年限 | 1年 | 2年 | 3年 | 4年 | 總計 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
經(jīng)測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤的估計值為決策依據(jù),如果你是公司負責人,會選擇哪款車型?
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù),,.
【答案】(1)見解析;(2)采購款車型.
【解析】
(1)求出相關(guān)系數(shù),判斷即可,求出回歸方程的系數(shù),即可得到關(guān)于的線性回歸方程;
(2)分別求出A,B的平均利潤,判斷即可.
解:(1)由表格中數(shù)據(jù)可得,,.
∵ .
∴與月份代碼之間具有較強的相關(guān)關(guān)系,故可用線性回歸模型擬合兩變量之間的關(guān)系.
,
∴,
∴關(guān)于的線性回歸方程為.
(2)這100輛款單車平均每輛的利潤為
(元)
這100輛款單車平均每輛的利潤為
(元)
∴用頻率估計概率,款單車與款單車平均每輛的利潤估計值分別為350元、400元,應采購款車型.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)當時,若對任意均有成立,求實數(shù)的取值范圍;
(2)設直線與曲線和曲線相切,切點分別為,,其中.
①求證:;
②當時,關(guān)于的不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項目在冬奧會金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運動員自出發(fā)點出發(fā)進入滑行階段后,每滑行一圈都要依次經(jīng)過個直道與彎道的交接口.已知某男子速滑運動員順利通過每個交接口的概率均為,摔倒的概率均為.假定運動員只有在摔倒或到達終點時才停止滑行,現(xiàn)在用表示該運動員滑行最后一圈時在這一圈內(nèi)已經(jīng)順利通過的交接口數(shù).
(1)求該運動員停止滑行時恰好已順利通過個交接口的概率;
(2)求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下列命題其中正確的有( )
A.“實數(shù)都大于0”的否定是“實數(shù)都小于或等于0”
B.“三角形外角和為360度”是含有全稱量詞的真命題
C.“至少存在一個實數(shù),使得”是含有存在量詞的真命題
D.“能被3整除的整數(shù),其各位數(shù)字之和也能被3整除”是全稱量詞命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個不透明的口袋中裝有大小、形狀完全相同的個小球,將它們分別編號為,,,…,,甲、乙、丙三人從口袋中依次各抽出個小球.甲說:我抽到了編號為的小球,乙說:我抽到了編號為的小球,丙說:我沒有抽到編號為的小球.已知甲、乙、丙三人抽到的個小球的編號之和都相等,且甲、乙、丙三人的說法都正確,則丙抽到的個小球的編號分別為________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為(為常數(shù),,且),點(在軸下方)是曲線與的兩個不同交點.
(1)求曲線的普通方程和的直角坐標方程;
(2)求的最大值及此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,且.點
是棱的中點,平面與棱交于點.
(1)求證:∥;
(2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務次數(shù),則每維修一次需支付維修服務費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
以這100臺機器維修次數(shù)的頻率代替1臺機器維修次數(shù)發(fā)生的概率, 記表示1臺機器三年內(nèi)共需維修的次數(shù),表示購買1臺機器的同時購買的維修次數(shù).
(1)求的分布列;
(2)若要求,確定的最小值;
(3)以在維修上所需費用的期望值為決策依據(jù),在與之中選其一,應選用哪個?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為響應綠色出行,某市在推出“共享單車”后,又推出“新能源租賃汽車”.每次租車收費的標準由兩部分組成:①里程計費:1元/公里;②時間計費:元/分.已知陳先生的家離上班公司公里,每天上、下班租用該款汽車各一次.一次路上開車所用的時間記為(分),現(xiàn)統(tǒng)計了50次路上開車所用時間,在各時間段內(nèi)頻數(shù)分布情況如下表所示
將各時間段發(fā)生的頻率視為概率,一次路上開車所用的時間視為用車時間,范圍為分.
(1)估計陳先生一次租用新能源租賃汽車所用的時間不低于分鐘的概率;
(2)若公司每月發(fā)放元的交通補助費用,請估計是否足夠讓陳先生一個月上下班租用新能源租賃汽車(每月按天計算),并說明理由.(同一時段,用該區(qū)間的中點值作代表)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com