【題目】為了政府對(duì)過(guò)熱的房地產(chǎn)市場(chǎng)進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門(mén)對(duì)城市人和農(nóng)村人進(jìn)行了買(mǎi)房心理預(yù)測(cè)調(diào)研,用簡(jiǎn)單隨機(jī)抽樣的方法抽取了110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:

買(mǎi)房

不買(mǎi)房

糾結(jié)

城市人

5

15

農(nóng)村人

20

10

已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.
(Ⅰ)分別求樣本中城市人中的不買(mǎi)房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);
(Ⅱ)從參與調(diào)研的城市人中用分層抽樣方法抽取6人,進(jìn)一步統(tǒng)計(jì)城市人的某項(xiàng)收入指標(biāo),假設(shè)一個(gè)買(mǎi)房人的指標(biāo)算作3,一個(gè)糾結(jié)人的指標(biāo)算作2,一個(gè)不買(mǎi)房人的指標(biāo)算作1,現(xiàn)在從這6人中再隨機(jī)選取3人,令X=再抽取3人指標(biāo)之和,求X的分布列和數(shù)學(xué)期望.

【答案】解:(Ⅰ)設(shè)城市人中的不買(mǎi)房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù)分別是x、y人, 則 = ①,
(20+x)+(30+y)=110②;
由①②組成方程組,解得x=10,y=50;
∴城市人中的不買(mǎi)房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù)分別是10和50人;
(Ⅱ)由(Ⅰ)得到如下列聯(lián)表:

買(mǎi)房

不買(mǎi)房

糾結(jié)

總計(jì)

城市人

5

10

15

30

農(nóng)村人

20

10

50

80

總計(jì)

25

20

65

110

從參與調(diào)研的城市人中用分層抽樣方法抽取的6人中,不買(mǎi)房和糾結(jié)的人數(shù)分別是1,2和3,
所以X=7,6,5,4;
所以P(X=7)= = ,
P(X=6)= = ,
P(X=5)= =
P(X=4)= = ;
所以X的分布列為

X

7

6

5

4

P

數(shù)學(xué)期望是7× +6× +5× +4× =
【解析】(Ⅰ)設(shè)城市人中的不買(mǎi)房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù)分別是x、y人,根據(jù)比例關(guān)系列出方程組求出x、y的值即可;(Ⅱ)由(Ⅰ)填寫(xiě)列聯(lián)表,根據(jù)題意得出X的可能取值,計(jì)算對(duì)應(yīng)的概率值,寫(xiě)出分布列,計(jì)算數(shù)學(xué)期望值.
【考點(diǎn)精析】關(guān)于本題考查的離散型隨機(jī)變量及其分布列,需要了解在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+x﹣lnx,(a>0). (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)f(x)極值點(diǎn)為x0 , 若存在x1 , x2∈(0,+∞),且x1≠x2 , 使f(x1)=f(x2),求證:x1+x2>2x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.如圖,在陽(yáng)馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,過(guò)棱PC的中點(diǎn)E,作EF⊥PB交PB于點(diǎn)F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫(xiě)出其每個(gè)面的直角(只需寫(xiě)出結(jié)論);若不是,說(shuō)明理由;
(2)若面DEF與面ABCD所成二面角的大小為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】神舟五號(hào)飛船成功完成了第一次載人航天飛行,實(shí)現(xiàn)了中國(guó)人民的航天夢(mèng)想,某段時(shí)間飛船在太空中運(yùn)行的軌道是一個(gè)橢圓,地球在橢圓的一個(gè)焦點(diǎn)上,如圖所示,假設(shè)航天員到地球最近距離為d1 , 到地球最遠(yuǎn)距離為d2 , 地球的半徑為R,我們想象存在一個(gè)鏡像地球,其中心在神舟飛船運(yùn)行軌道的另外一個(gè)焦點(diǎn)上,上面住著一個(gè)神仙發(fā)射某種神秘信號(hào)需要飛行中的航天員中轉(zhuǎn)后地球人才能接收到,則神秘信號(hào)傳導(dǎo)的最短距離為(
A.d1+d2+R
B.d2﹣d1+2R
C.d2+d1﹣2R
D.d1+d2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】17世紀(jì)日本數(shù)學(xué)家們對(duì)這個(gè)數(shù)學(xué)關(guān)于體積方法的問(wèn)題還不了解,他們將體積公式“V=kD3”中的常數(shù)k稱為“立圓術(shù)”或“玉積率”,創(chuàng)用了求“玉積率”的獨(dú)特方法“會(huì)玉術(shù)”,其中,D為直徑,類似地,對(duì)于等邊圓柱(軸截面是正方形的圓柱叫做等邊圓柱)、正方體也有類似的體積公式V=kD3 , 其中,在等邊圓柱中,D表示底面圓的直徑;在正方體中,D表示棱長(zhǎng),假設(shè)運(yùn)用此“會(huì)玉術(shù)”,求得的球、等邊圓柱、正方體的“玉積率”分別為k1 , k2 , k3=(
A. :1
B. :2
C.1:3:
D.1:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|3x﹣1|﹣2|x|+2.
(1)解不等式:f(x)<10;
(2)若對(duì)任意的實(shí)數(shù)x,f(x)﹣|x|≤a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元前3世紀(jì),古希臘歐幾里得在《幾何原本》里提出:“球的體積(V)與它的直徑(d)的立方成正比”,此即V=kd3 , 與此類似,我們可以得到: ⑴正四面體(所有棱長(zhǎng)都相等的四面體)的體積(V)與它的棱長(zhǎng)(a)的立方成正比,即V=ma3;
⑵正方體的體積(V)與它的棱長(zhǎng)(a)的立方成正比,即V=na3;
⑶正八面體(所有棱長(zhǎng)都相等的八面體)的體積(V)與它的棱長(zhǎng)(a)的立方成正比,即V=ta3;
那么m:n:t=(
A.1:6 :4
B. :12:16
C. :1:
D. :6:4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為 ,以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.
(1)求橢圓C的方程;
(2)如圖,斜率為 的直線l與橢圓C交于A,B兩點(diǎn),點(diǎn)P(2,1)在直線l的上方,若∠APB=90°,且直線PA,PB分別與y軸交于點(diǎn)M,N,求線段MN的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案