【題目】已知橢圓 的離心率為 ,以橢圓的四個頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.
(1)求橢圓C的方程;
(2)如圖,斜率為 的直線l與橢圓C交于A,B兩點(diǎn),點(diǎn)P(2,1)在直線l的上方,若∠APB=90°,且直線PA,PB分別與y軸交于點(diǎn)M,N,求線段MN的長度.
【答案】
(1)
解:由橢圓的離心率e= = = ,則a2=4b2,
以橢圓的四個頂點(diǎn)為頂點(diǎn)的四邊形的面積為8,則2× ×2a×b=8,則ab=4,
解得:a=2 ,b= ,
則橢圓的標(biāo)準(zhǔn)方程為: ;
(2)
解:設(shè)直線l的方程y= x+m,A(x1,y1),B(x2,y2),
則 ,整理得:x2+2mx+2m2﹣4=0,
△=(2m)2﹣4(2m2﹣4)>0,解得:﹣2<m<2,
x1+x2=﹣2m,x1x2=2m2﹣4,
則kPA= ,kPB= ,
則 kPA+kPB= + = ,
則( x1+m﹣1)(x2﹣2)+( x2+m﹣1)(x1﹣2),
=x1x2+(m﹣2)(x1+x2)﹣4(m﹣1),
=2m2﹣4+(m﹣2)(﹣2m)﹣4(m﹣1)=0,
∴kPA+kPB=0,
由∠APB=90°,則kPA=1,kPB=﹣1,
則△PMN是等腰直角三角形,則MN=2xP=4,
線段MN的長度4.
【解析】(1)由題意可知a2=4b2 , ab=4,即可求得a和b的值,求得橢圓方程;(2)設(shè)直線l方程,代入橢圓方程,由韋達(dá)定理,直線的斜率公式求得kPA+kPB=0,則△PMN是等腰直角三角形,則MN=2xP=4,即可求得線段MN的長度.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識可以得到問題的答案,需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了政府對過熱的房地產(chǎn)市場進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門對城市人和農(nóng)村人進(jìn)行了買房心理預(yù)測調(diào)研,用簡單隨機(jī)抽樣的方法抽取了110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
買房 | 不買房 | 糾結(jié) | |
城市人 | 5 | 15 | |
農(nóng)村人 | 20 | 10 |
已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.
(Ⅰ)分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);
(Ⅱ)從參與調(diào)研的城市人中用分層抽樣方法抽取6人,進(jìn)一步統(tǒng)計(jì)城市人的某項(xiàng)收入指標(biāo),假設(shè)一個買房人的指標(biāo)算作3,一個糾結(jié)人的指標(biāo)算作2,一個不買房人的指標(biāo)算作1,現(xiàn)在從這6人中再隨機(jī)選取3人,令X=再抽取3人指標(biāo)之和,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四面體ABCD中,M是棱AD的中點(diǎn),O是點(diǎn)A在底面BCD內(nèi)的射影,則異面直線BM與AO所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足 ,設(shè){Sn}的前n項(xiàng)和為Tn , T2017= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=|2ax+1|,(a∈R),不等式f(x)≤3的解集{x|﹣2≤x≤1}.
(1)求a的值;
(2)若 恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一點(diǎn),且 =5,則| |等于( )
A.2
B.4
C.6
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐A﹣BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.
(1)若F是AD的中點(diǎn),求證:EF∥平面ABC;
(2)若AD=DE,求BE與平面ACE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在一次第二課堂活動中,特意設(shè)置了過關(guān)智力游戲,游戲共五關(guān).規(guī)定第一關(guān)沒過者沒獎勵,過n(n∈N*)關(guān)者獎勵2n﹣1件小獎品(獎品都一樣).如圖是小明在10次過關(guān)游戲中過關(guān)數(shù)的條形圖,以此頻率估計(jì)概率.
(Ⅰ)求小明在這十次游戲中所得獎品數(shù)的均值;
(Ⅱ)規(guī)定過三關(guān)者才能玩另一個高級別的游戲,估計(jì)小明一次游戲后能玩另一個游戲的概率;
(Ⅲ)已知小明在某四次游戲中所過關(guān)數(shù)為{2,2,3,4},小聰在某四次游戲中所過關(guān)數(shù)為{3,3,4,5},現(xiàn)從中各選一次游戲,求小明和小聰所得獎品總數(shù)超過10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年巴西奧運(yùn)會的周邊商品有80%左右為“中國制造”,所有的廠家都是經(jīng)過層層篩選才能獲此殊榮.甲、乙兩廠生產(chǎn)同一產(chǎn)品,為了解甲、乙兩廠的產(chǎn)品質(zhì)量,以確定這一產(chǎn)品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品共98件中分別抽取9件和5件,測量產(chǎn)品中的微量元素的含量(單位:毫克).下表是從乙廠抽取的5件產(chǎn)品的測量數(shù)據(jù):
編號 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
(1)求乙廠生產(chǎn)的產(chǎn)品數(shù)量:
(2)當(dāng)產(chǎn)品中的微量元素x、y滿足:x≥175,且y≥75時,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量:
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com