【題目】如圖,已知圓錐的頂點(diǎn)為P,母線長為4,底面圓心為O,半徑為2.
(1)求這個(gè)圓錐的體積;
(2)設(shè)OA,OB是底面半徑,且∠AOB=90°,M為線段AB的中點(diǎn),求異面直線PM與OB所成角的正切值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個(gè)長度為的區(qū)間,使;如果沒有,請說明理由?(注:區(qū)間的長度).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD為菱形,△PAD為正三角形,且E為AD的中點(diǎn),BE⊥平面PAD.
(Ⅰ)求證:平面PBC⊥平面PEB;
(Ⅱ)求平面PEB與平面PDC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知a,b,N都是正數(shù),a≠1,b≠1,證明對數(shù)換底公式:logaN=;
(2)寫出對數(shù)換底公式的一個(gè)性質(zhì)(不用證明),并舉例應(yīng)用這個(gè)性質(zhì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知a,b,N都是正數(shù),a≠1,b≠1,證明對數(shù)換底公式:logaN=;
(2)寫出對數(shù)換底公式的一個(gè)性質(zhì)(不用證明),并舉例應(yīng)用這個(gè)性質(zhì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線y=1+與直線y=k(x-2)+4有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A. (,+∞)B. (,]C. (0,)D. (,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】,為兩個(gè)不同的平面,,為兩條不同的直線,下列命題中正確的是( )
①若,,則; ②若,,則;
③若,,,則 ④若,,,則.
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的一段圖象如圖所示.將函數(shù)的圖象向右平移個(gè)單位長度,可得到函數(shù)的圖象,且圖象關(guān)于原點(diǎn)對稱.
(1)求的解析式并求其單調(diào)遞增區(qū)間;
(2)求實(shí)數(shù)的最小值,并寫出此時(shí)的表達(dá)式;
(3)在(2)的條件下,設(shè),關(guān)于的函數(shù)在區(qū)間上的最小值為-2,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:直線是曲線的切線;
(Ⅲ)寫出的一個(gè)值,使得函數(shù)有三個(gè)不同零點(diǎn)(只需直接寫出數(shù)值)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com