【題目】已知數(shù)列{an}中,相鄰兩項an,an+1是關(guān)于x的方程:x2+3nx+bn0nN*)的兩實根,且a11

1)若Sn為數(shù)列{an}的前n項和,求S100 ;

2)求數(shù)列{an}{bn}的通項公式.

【答案】(1)S100=﹣7500;(2),

【解析】

1)由韋達定理可得所以,即把相鄰兩項之和看成一個新的數(shù)列,這個新數(shù)列為等差數(shù)列,包含新數(shù)列的前50項,用等差數(shù)列的前項和公式即可;

2)由、兩式相減得,即隔項成等差數(shù)列,由可得奇數(shù)項的通項,由可得偶數(shù)項的通項,由的通項可得的通項公式.

解:(1)因為an、an+1是關(guān)于的兩實根,

所以an+an+1=﹣3n,a2n1+a2n=﹣32n1)=36n,

所以S100=﹣7500

2,,兩式相減,

,

因為,所以,

因為,所以,

,

所以,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)處取得極值,對 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)對其定義域內(nèi)的任意,當時總有,則稱為緊密函數(shù),例如函數(shù)是緊密函數(shù),下列命題:

緊密函數(shù)必是單調(diào)函數(shù);函數(shù)時是緊密函數(shù);

函數(shù)是緊密函數(shù);

若函數(shù)為定義域內(nèi)的緊密函數(shù),,則;

若函數(shù)是緊密函數(shù)且在定義域內(nèi)存在導數(shù),則其導函數(shù)在定義域內(nèi)的值一定不為零.

其中的真命題是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】裴波那契數(shù)列(Fibonacci sequence )又稱黃金分割數(shù)列,因為數(shù)學家列昂納多·裴波那契以兔子繁殖為例子引入,故又稱為兔子數(shù)列,在數(shù)學上裴波那契數(shù)列被以下遞推方法定義:數(shù)列滿足:,現(xiàn)從該數(shù)列的前40項中隨機抽取一項,則能被3整除的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中a為常數(shù),e是自然對數(shù)的底數(shù),,曲線在其與y軸的交點處的切線記作,曲線在其與x軸的交點處的切線記作,且.

1)求之間的距離;

2)對于函數(shù)的公共定義域中的任意實數(shù),稱的值為函數(shù)處的偏差.求證:函數(shù)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認為該事件在一段時間內(nèi)沒有發(fā)生大規(guī)模群體感染的標志是“連續(xù)10日,每天新增疑似病例不超過7人”.過去10日,甲、乙、丙、丁四地新增疑似病例數(shù)據(jù)信息如下:

甲地:總體平均數(shù)為3,中位數(shù)為4

乙地:總體平均數(shù)為1,總體方差大于0

丙地:總體平均數(shù)為2,總體方差為3;

丁地:中位數(shù)為2,眾數(shù)為3;

則甲、乙、兩、丁四地中,一定沒有發(fā)生大規(guī)模群體感染的是(

A.甲地B.乙地C.丙地D.丁地

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中醫(yī)藥,是包括漢族和少數(shù)民族醫(yī)藥在內(nèi)的我國各民族醫(yī)藥的統(tǒng)稱,是反映中華民族對生命、健康和疾病的認識,具有悠久歷史傳統(tǒng)和獨特理論及技術(shù)方法的醫(yī)藥學體系,是中華民族的瑰寶.某科研機構(gòu)研究發(fā)現(xiàn),某品種中醫(yī)藥的藥物成分甲的含量(單位:克)與藥物功效(單位:藥物單位)之間具有關(guān)系.檢測這種藥品一個批次的5個樣本,得到成分甲的平均值為4克,標準差為克,則估計這批中醫(yī)藥的藥物功效的平均值為(

A.22藥物單位B.20藥物單位C.12藥物單位D.10藥物單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

1)若函數(shù)的圖象在處的切線過,求的值;

2恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形為菱形,,,EF分別為,的中點.

1)求證:平面;

2)點G是線段上一動點,若與平面所成最大角的正切值為,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案