【題目】《中華人民共和國個人所得稅法》規(guī)定,公民月收入總額(工資、薪金等)不超過免征額的部分不必納稅,超過免征額的部分為全月應(yīng)納稅所得額,個人所得稅稅款按稅率表分段累計計算.為了給公民合理減負(fù),穩(wěn)步提升公民的收入水平,自2018年10月1日起,個人所得稅免征額和稅率進(jìn)行了調(diào)整,調(diào)整前后的個人所得稅稅率表如下:
(1)已知小李2018年9月份上交的稅費是295元,10月份月工資、薪金等稅前收入與9月份相同,請幫小李計算一下稅率調(diào)整后小李10月份的稅后實際收入是多少?
(2)某稅務(wù)部門在小李所在公司利用分層抽樣方法抽取某月100位不同層次員工的稅前收入,并制成下面的頻率分布直方圖.
(。┱埜鶕(jù)頻率分布直方圖估計該公司員工稅前收入的中位數(shù);
(ⅱ)同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表,按調(diào)整后稅率表,試估計小李所在的公司員工該月平均納稅多少元?
【答案】(1)調(diào)整后小李的實際收入是(元)(2)(。┰摴締T工收入的中位數(shù)為6625千元(ⅱ)小李所在的公司員工平均納稅129.2元
【解析】
(1)先計算出稅前收入,再根據(jù)稅率求稅后實際收入;
(2)(i)由柱狀圖知,中位數(shù)落在第二組,這樣根據(jù)中位數(shù)的特點直接求解即可;
(ii)根據(jù)所給的數(shù)據(jù)的計算方法直接求出按調(diào)整起征點后該公司員工當(dāng)月所交的平均個稅.
解(1)設(shè)小李9月份的稅前收入為x元,因為295<345
所以按調(diào)整起征點前應(yīng)繳納個稅為:,
解得
按調(diào)整起征點后應(yīng)繳納個稅為:
調(diào)整后小李的實際收入是(元)
(2)(。┯芍鶢顖D知,中位數(shù)落在第二組,不妨設(shè)中位數(shù)為x千元,
則有,解得(千元),
估計該公司員工收入的中位數(shù)為6625千元;
(ⅱ)按調(diào)整起征點后該公司員工當(dāng)月所交的平均個稅為(元)
估計小李所在的公司員工平均納稅129.2元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中a為常數(shù),e是自然對數(shù)的底數(shù),,曲線在其與y軸的交點處的切線記作,曲線在其與x軸的交點處的切線記作,且.
(1)求之間的距離;
(2)對于函數(shù)和的公共定義域中的任意實數(shù),稱的值為函數(shù)和在處的偏差.求證:函數(shù)和在其公共定義域內(nèi)的所有偏差都大于2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面為正方形,△PAD為等邊三角形,平面PAD丄平面PCD.
(1)證明:平面PAD丄平面ABCD:
(2)若AB=2,Q為線段的中點,求三棱錐Q-PCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在六棱錐P﹣ABCDEF中,六邊形ABCDEF為正六邊形,平面PAB⊥平面ABCDEF,AB=1,PA,PB=2.
(1)求證:PA⊥平面ABCDEF;
(2)求直線PD與平面PAE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形為菱形,,,E,F分別為,的中點.
(1)求證:平面;
(2)點G是線段上一動點,若與平面所成最大角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新中國昂首闊步地走進(jìn)2019年,迎來了她70歲華誕.某平臺組織了“偉大的復(fù)興之路一新中國70周年知識問答”活動,規(guī)則如下:共有30道單選題,每題4個選項中只有一個正確,每答對一題獲得5顆紅星,每答錯一題反扣2顆紅星;若放棄此題,則紅星數(shù)無變化.答題所獲得的紅星可用來兌換神秘禮品,紅星數(shù)越多獎品等級越高.小強參加該活動,其中有些題目會做,有些題目可以排除若干錯誤選項,其余的題目則完全不會.
(1)請問:對于完全不會的題目,小強應(yīng)該隨機從4個選項中選一個作答,還是選擇放棄?(利用統(tǒng)計知識說明理由)
(2)若小強有12道題目會做,剩下的題目中,可以排除一個錯誤選項、可以排除兩個錯誤選項和完全不會的題目的數(shù)量比是.請問:小強在本次活動中可以獲得最多紅星數(shù)的期望是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD-A1B1C1D1的底面為菱形,AA1⊥底面ABCD,∠BAD=120°,AB=2,E,F分別為CD,AA1的中點.
(Ⅰ)求證:DF∥平面B1AE;
(Ⅱ)若直線AD1與平面B1AE所成角的正弦值為,求AA1的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角B1-AE-D1的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有5個命題:
①函數(shù)的最小正周期是;
②終邊在軸上的角的集合是;
③在同一坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有3個公共點;
④把函數(shù)的圖象向右平移得到的圖象;
⑤角為第一象限角的充要條件是.
其中,真命題的編號是______(寫出所有真命題的編號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com