【題目】從某高中學(xué)生的體能測(cè)試結(jié)果中,隨機(jī)抽取100名學(xué)生的測(cè)試結(jié)果,按體重分組得到如圖所示的頻率分布直方圖.

1)若該校約有的學(xué)生體重不超過標(biāo)準(zhǔn)體重,試估計(jì)的值,并說(shuō)明理由;

2)從第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)行了第二次測(cè)試,現(xiàn)從這6人中隨機(jī)抽取2人進(jìn)行日常運(yùn)動(dòng)習(xí)慣的問卷調(diào)查,求抽到4組的人數(shù)的分布列及期望.

【答案】1;2.

【解析】

1)先分析頻率為對(duì)應(yīng)在哪一組體重中,然后根據(jù)該組體重的端點(diǎn)值以及該組之前所有組的頻率之和計(jì)算出標(biāo)準(zhǔn)體重中的值;

2)先計(jì)算出的值,利用分層抽樣確定出第3、45組抽取的人數(shù),然后根據(jù)超幾何分布的相關(guān)知識(shí)列出分布列并計(jì)算出期望值.

1)因?yàn)?/span>兩段的頻率分別為,且,

所以應(yīng)在段之中,

所以,所以

2)因?yàn)?/span>,

所以第3、4、5組人數(shù)的頻率之比為

所以第3組抽取人,第4組抽取人,第5組抽取

由上可知可取,

所以,,,

所以分布列為:

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓()的右焦點(diǎn)為F,左頂點(diǎn)為A,離心率,且經(jīng)過圓O:的圓心.過點(diǎn)F作不與坐標(biāo)軸重合的直線和該橢圓交于MN兩點(diǎn),且直線分別與直線交于PQ兩點(diǎn).

1)求橢圓的方程;

2)證明:為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)在曲線上任取一點(diǎn),連接,在射線上取點(diǎn),使,點(diǎn)軌跡的極坐標(biāo)方程;

2)在曲線上任取一點(diǎn),在曲線上任取一點(diǎn),的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由郭帆執(zhí)導(dǎo)吳京主演的電影《流浪地球》于201925日起在中國(guó)內(nèi)地上映,影片引發(fā)了觀影熱潮,預(yù)計(jì)《流浪地球》票房收入47億人民幣,超過《紅海行動(dòng)》成為中國(guó)影史票房亞軍,僅次于《戰(zhàn)狼2.某電影院為了解該影院觀看《流浪地球》的觀眾的年齡構(gòu)成情況,隨機(jī)抽取了40名觀眾,將他們的年齡分成7段:,,,,,得到如圖所示的頻率分布直方圖.

1)試求這40名觀眾年齡的平均數(shù)、中位數(shù)、眾數(shù);

2)(i)若從樣本中年齡在50歲以上的觀眾中任取3名贈(zèng)送VIP貴賓觀影卡,求這3名觀眾至少有1人年齡不低于70歲的概率;

ii)該電影院決定采用抽獎(jiǎng)方式來(lái)提升觀影人數(shù),將《流浪地球》電影票票價(jià)提高20元,并允許購(gòu)買電影票的觀眾抽獎(jiǎng)3次,中獎(jiǎng)1次、2次、3次分別獎(jiǎng)現(xiàn)金元、元,.設(shè)觀眾每次中獎(jiǎng)的概率均為,若要使抽獎(jiǎng)方案對(duì)電影院有利,則最高可定為多少元?(結(jié)果精確到個(gè)位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知六個(gè)函數(shù):①;②;③;④;⑤;⑥,從中任選三個(gè)函數(shù),則其中既有奇函數(shù)又有偶函數(shù)的選法共有_______種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓)的離心率等于,它的一個(gè)長(zhǎng)軸端點(diǎn)恰好是拋物線的焦點(diǎn).

1)求橢圓的方程;

2)若直線與橢圓有且只有一個(gè)公共點(diǎn),且直線與直線分別交于兩點(diǎn),試探究以線段為直徑的圓是否恒過定點(diǎn)?若恒過定點(diǎn),求出該定點(diǎn),若不恒過定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)=sinωxcosωx)(ω0,|φ|)的圖象與直線y2的兩個(gè)相鄰的交點(diǎn)之間的距離為π,且fx+f(﹣x)=0,若gx)=sinωx),則(  。

A.gx)在(0)上單調(diào)遞增B.gx)在 0,)上單調(diào)遞減

C.gx)在(,)上單調(diào)遞增D.gx)在(,)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:區(qū)間,,的長(zhǎng)度均為,若不等式的解集是互不相交區(qū)間的并集,設(shè)該不等式的解集中所有區(qū)間的長(zhǎng)度之和為,則( )

A. 當(dāng)時(shí),B. 當(dāng)時(shí),

C. 當(dāng)時(shí),D. 當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推行“高中新課程改革”,某數(shù)學(xué)老師分別用“傳統(tǒng)教學(xué)”和“新課程”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果.期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績(jī)不低于120分者為“成績(jī)優(yōu)良”.

分?jǐn)?shù)

甲班頻數(shù)

7

5

4

3

1

乙班頻數(shù)

1

2

5

5

7

1)從以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否犯錯(cuò)誤的頻率不超過0.01的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

成績(jī)不優(yōu)良

總計(jì)

P

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

附:,其中.臨界值表如上表:

2)現(xiàn)從上述40人中,學(xué)校按成績(jī)是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核,在這8人中,記成績(jī)不優(yōu)良的乙班人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案