【題目】已知函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中 ,則函數(shù)g(x)=cos(2x-φ)的圖象( 。
A.關(guān)于點 對稱B.關(guān)于軸對稱
C.可由函數(shù)f(x)的圖象向右平移 個單位得到D.可由函數(shù)f(x)的圖象向左平移個單位得到
【答案】B
【解析】
利用三角函數(shù)的奇偶性求得φ,再利用三角函數(shù)的圖象對稱性、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,判斷各個選項是否正確,從而得出結(jié)論.
函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中,
∴y=2sinxsin(x+3φ)是奇函數(shù),∴3φ=,φ=,則函數(shù)g(x)=cos(2x﹣φ)=cos(2x﹣).
當(dāng)時,,,則函數(shù)不關(guān)于點對稱,選項A錯誤;
當(dāng)時,,則函數(shù)關(guān)于直線對稱,選項B正確;
函數(shù),
其圖像向右平移個單位的解析式為,
選項C錯誤;
其圖像向左平移個單位的解析式為,
選項D錯誤;
故選B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線是焦點在軸上的橢圓,兩個焦點分別是是,,且,是曲線上的任意一點,且點到兩個焦點距離之和為4.
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)的左頂點為,若直線:與曲線交于兩點,(,不是左右頂點),且滿足,求證:直線恒過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年初,某市為了實現(xiàn)教育資源公平,辦人民滿意的教育,準(zhǔn)備在今年8月份的小升初錄取中在某重點中學(xué)實行分?jǐn)?shù)和搖號相結(jié)合的錄取辦法.該市教育管理部門為了了解市民對該招生辦法的贊同情況,隨機采訪了440名市民,將他們的意見和是否近三年家里有小升初學(xué)生的情況進行了統(tǒng)計,得到如下的2×2列聯(lián)表.
贊同錄取辦法人數(shù) | 不贊同錄取辦法人數(shù) | 合計 | |
近三年家里沒有小升初學(xué)生 | 180 | 40 | 220 |
近三年家里有小升初學(xué)生 | 140 | 80 | 220 |
合計 | 320 | 120 | 440 |
(1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯誤的概率不超過0.001的前提下認(rèn)為是否贊同小升初錄取辦法與近三年是否家里有小升初學(xué)生有關(guān);
(2)從上述調(diào)查的不贊同小升初錄取辦法人員中根據(jù)近三年家里是否有小升初學(xué)生按分層抽樣抽出6人,再從這6人中隨機抽出3人進行電話回訪,求3人中恰有1人近三年家里沒有小升初學(xué)生的概率.
附:,其中.
P() | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,圓的方程為,,,為圓上三個定點,某同學(xué)從點開始,用擲骰子的方法移動棋子.規(guī)定:①每擲一次骰子,把一枚棋子從一個定點沿圓弧移動到相鄰下一個定點;②棋子移動的方向由擲骰子決定,若擲出骰子的點數(shù)為偶數(shù),則按圖中箭頭方向移動;若擲出骰子的點數(shù)為奇數(shù),則按圖中箭頭相反的方向移動.設(shè)擲骰子次時,棋子移動到,,處的概率分別為,,.例如:擲骰子一次時,棋子移動到,,處的概率分別為,,.
(1)分別擲骰子二次,三次時,求棋子分別移動到,,處的概率;
(2)擲骰子次時,若以軸非負(fù)半軸為始邊,以射線,,為終邊的角的余弦值記為隨機變量,求的分布列和數(shù)學(xué)期望;
(3)記,,,其中.證明:數(shù)列是等比數(shù)列,并求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車公司最近研發(fā)了一款新能源汽車,并在出廠前對100輛汽車進行了單次最大續(xù)航里程的測試,F(xiàn)對測試數(shù)據(jù)進行分析,得到如圖所示的頻率分布直方圖:
(1)估計這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表).
(2)根據(jù)大量的汽車測試數(shù)據(jù),可以認(rèn)為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計算第(1)問中樣本標(biāo)準(zhǔn)差的近似值為50。用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.
參考數(shù)據(jù):若隨機變量服從正態(tài)分布,則,,.
(3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動,客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進,若遙控車最終停在“勝利大本營”,則可獲得購車優(yōu)惠券3萬元。已知硬幣出現(xiàn)正、反面的概率都是0.5方格圖上標(biāo)有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動一次。若擲出正面,遙控車向前移動一格(從到)若擲出反面遙控車向前移動兩格(從到),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結(jié)束。設(shè)遙控車移到第格的概率為P試證明是等比數(shù)列,并求參與游戲一次的顧客獲得優(yōu)惠券金額的期望值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,是自然對數(shù)的底數(shù)),是函數(shù)的一個極值點.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè),若,不等式恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4,坐標(biāo)系與參數(shù)方程】
在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),在以O為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
(Ⅰ)求直線的普通方程與曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線與軸的交點為P,直線與曲線C的交點為A,B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面,平面平面,是邊長為2的等邊三角形,,.
(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com