【題目】設曲線是焦點在軸上的橢圓,兩個焦點分別是是,且是曲線上的任意一點,且點到兩個焦點距離之和為4.

1)求的標準方程;

2)設的左頂點為,若直線與曲線交于兩點,不是左右頂點),且滿足,求證:直線恒過定點,并求出該定點的坐標.

【答案】12)證明見解析,直線恒過定點

【解析】

1)根據(jù)橢圓的定義得,又焦點提供出值,從而可得,最終得橢圓方程.

2)首先明確,設,把直線方程代入橢圓方程可得,注意,由,∴,即,代入可得關系(要滿足直線與橢圓相交),把這個關系代入直線方程可得出直線所過的定點.

1)設橢圓方程為,

由題意,即,∴,

∴橢圓的方程是.

2)由(1)可知,設,,

聯(lián)立,得,

,

,

,

,

,∴,即,

,

,∴

解得,,且均滿足即,

時,的方程為,直線恒過,與已知矛盾;

,的方程為,直線恒過.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點,動點到點的距離比到軸的距離大1個單位長度.

1)求動點的軌跡方程;

2)若過點的直線與曲線交于,兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)常數(shù))滿足.

1)求出的值,并就常數(shù)的不同取值討論函數(shù)奇偶性;

2)若在區(qū)間上單調遞減,求的最小值;

3)在(2)的條件下,當取最小值時,證明:恰有一個零點且存在遞增的正整數(shù)數(shù)列,使得成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且曲線在點處的切線方程為.

(1)求實數(shù)ab的值及函數(shù)的單調區(qū)間;

(2)若關于x的不等式恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線參數(shù)方程為為參數(shù)),將曲線上所有點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標變?yōu)樵瓉淼?/span>,得到曲線.

1)求曲線的普通方程;

2)過點且傾斜角為的直線與曲線交于兩點,求取得最小值時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,一個長軸頂點在直線上,若直線與橢圓交于,兩點,為坐標原點,直線的斜率為,直線的斜率為.

1)求該橢圓的方程.

2)若,試問的面積是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019女排世界杯于2019914日到929日舉行,中國女排以十一勝衛(wèi)冕女排世界杯冠軍,四人進入最佳陣容,女排精神,已經(jīng)是一種文化.為了了解某市居民對排球知識的了解情況,某機構隨機抽取了100人參加排球知識問卷調查,將得分情況整理后作出的直方圖如下:

1)求圖中實數(shù)的值,并估算平均得分(每組數(shù)據(jù)以區(qū)間的中點值為代表);

2)得分在90分以上的稱為鐵桿球迷,以樣本頻率估計總體概率,從該市居民中隨機抽取4人,記這四人中鐵桿球迷的人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的兩個焦點為、,P為該雙曲線上一點,滿足,P到坐標原點O的距離為d,且,則________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中 ,則函數(shù)g(x)=cos(2x-φ)的圖象( 。

A.關于點 對稱B.關于軸對稱

C.可由函數(shù)f(x)的圖象向右平移 個單位得到D.可由函數(shù)f(x)的圖象向左平移個單位得到

查看答案和解析>>

同步練習冊答案