【題目】今年3月5日,國務(wù)院總理李克強作的政府工作報告中,提到要“懲戒學(xué)術(shù)不端,力戒學(xué)術(shù)不端,力戒浮躁之風”.教育部日前公布的《教育部2019年部門預(yù)算》中透露,2019年教育部擬抽檢博士學(xué)位論文約6000篇,預(yù)算為800萬元.國務(wù)院學(xué)位委員會、教育部2014年印發(fā)的《博士碩士學(xué)位論文抽檢辦法》通知中規(guī)定:每篇抽檢的學(xué)位論文送3位同行專家進行評議,3位專家中有2位以上(含2位)專家評議意見為“不合格”的學(xué)位論文,將認定為“存在問題學(xué)位論文”.有且只有1位專家評議意見為“不合格”的學(xué)位論文,將再送2位同行專家進得復(fù)評,2位復(fù)評專家中有1位以上(含1位)專家評議意見為“不合格”的學(xué)位論文,將認定為“存在問題學(xué)位論文”.設(shè)每篇學(xué)位論文被每位專家評議為“不合格”的概率均為,且各篇學(xué)位論文是否被評議為“不合格”相互獨立.
(1)記一篇抽檢的學(xué)位論文被認定為“存在問題學(xué)位論文”的概率為,求;
(2)若擬定每篇抽檢論文不需要復(fù)評的評審費用為900元,需要復(fù)評的評審費用為1500元;除評審費外,其它費用總計為100萬元.現(xiàn)以此方案實施,且抽檢論文為6000篇,問是否會超過預(yù)算?并說明理由.
【答案】(1);(2)若以此方案實施,不會超過預(yù)算.
【解析】
(1)先求出一篇學(xué)位論文初評被認定為“存在問題學(xué)位論文”的概率,再求出一篇學(xué)位論文復(fù)評被認定為“存在問題學(xué)位論文”的概率,再把它們相加即得解;(2)先求出
,再求出其最大值,比較最大值和預(yù)算的大小即得解.
(1)因為一篇學(xué)位論文初評被認定為“存在問題學(xué)位論文”的概率為,
一篇學(xué)位論文復(fù)評被認定為“存在問題學(xué)位論文”的概率為,
所以一篇學(xué)位論文被認定為“存在問題學(xué)位論文”的概率為
.
(2)設(shè)每篇學(xué)位論文的評審費為元,則的可能取值為900,1500.
, ,
所以
.
令,
.
當時,,在單調(diào)遞增,
當時,,在單調(diào)遞減,
所以的最大值為.
所以實施此方案,最高費用為(萬元).
綜上,若以此方案實施,不會超過預(yù)算.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下說法正確的是( )
A.命題“,”的否定是“,”
B.命題“,互為倒數(shù),則”的逆命題為真
C.命題“若,都是偶數(shù),則是偶數(shù)”的否命題為真
D.“”是“”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求的值及函數(shù)的單調(diào)區(qū)間;
(2)若的極大值和極小值分別為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù),).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,射線與曲線交于兩點,直線與曲線相交于兩點.
(Ⅰ)求直線的普通方程和曲線C的直角坐標方程;
(Ⅱ)當時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是函數(shù)的極值點.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求證:函數(shù)存在唯一的極小值點,且.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直四棱柱ABCD﹣A1B1C1D1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分別是棱BC,B1C1上的動點,且EF∥CC1,CD=DD1=1,AB=2,BC=3.
(1)證明:無論點E怎樣運動,四邊形EFD1D都為矩形;
(2)當EC=1時,求幾何體A﹣EFD1D的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com