【題目】如圖,四棱錐的底面為直角梯形,,且,,,平面底面,為的中點,為等邊三角形,是棱上的一點,設(與不重合).
(1)若平面,求的值;
(2)當時,求二面角的大小.
科目:高中數(shù)學 來源: 題型:
【題目】已知,點滿足,記點的軌跡為.斜率為的直線過點,且與軌跡相交于兩點.
(1)求軌跡的方程;
(2)求斜率的取值范圍;
(3)在軸上是否存在定點,使得無論直線繞點怎樣轉動,總有成立?如果存在,求出定點;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體,是將高為2、底面半徑為1的圓柱沿過旋轉軸的平面切開后,將其中一半沿切面向右水平平移后形成的封閉體.分別為的中點,為弧的中點,為弧的中點.
(1)求直線與底面所成的角的大小;
(2)求異面直線與所成的角的大。ńY果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正三角形的邊長為,、、分別為各邊的中點,將△沿、、折疊,使、、三點重合,構成三棱錐.
(1)求平面與底面所成二面角的余弦值;
(2)設點、分別在、上, (為變量) ;
①當為何值時,為異面直線與的公垂線段? 請證明你的結論
②設異面直線與所成的角為,異面直線與所成的角為,試求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為有效促進我市體育產(chǎn)業(yè)和旅游產(chǎn)業(yè)有機融合,提高我市的知名度,更好地宣傳萍鄉(xiāng)武功山,并通過賽事向社會各界傳播健康、低碳、綠色、環(huán)保的運動理念。在今年9月21日第九屆環(huán)鄱陽湖國際自行車大賽第九站比賽在我市武功山舉行。在這次89.5公里的自行車個人賽中,其中25名參賽選手的成績(單位:分鐘)的莖葉圖如圖所示:
14 | 0 | 1 | 2 | 3 | 5 | 6 | 6 | 6 | 6 | 8 | 9 |
15 | 0 | 2 | 3 | 4 | 5 | 5 | 5 | 7 | 9 | ||
16 | 0 | 0 | 5 | 6 | 7 |