【題目】已知拋物線C:y2=4x的焦點為F,過點F的直線l與C相交于A,B兩點,若|AB|=8,求直線l的方程.
【答案】
【解析】試題分析:設直線l的方程為:y=k(x-1),代入y2=4x,整理得k2x2-(2k2+4)x+k2=0,利用韋達定理和拋物線的定義,能夠求出直線l的方程.
試題解析:
拋物線y2=4x的焦點為F(1,0),當直線l斜率不存在時,|AB|=4,不合題意.設直線l的方程為y=k(x-1),代入y2=4x,整理得k2x2-(2k2+4)x+k2=0.
設A(x1,y1),B(x2,y2),由題意知k≠0,
則x1+x2=.
由拋物線定義知,
|AB|=|AF|+|BF|=x1+1+x2+1=x1+x2+2,
∴x1+x2+2=8,即+2=8.
解得k=±1.
所以直線l的方程為y=±(x-1),
即x-y-1=0,x+y-1=0.
科目:高中數(shù)學 來源: 題型:
【題目】來自某校一班和二班的共計9名學生志愿服務者被隨機平均分配到運送礦泉水、清掃衛(wèi)生、維持秩序這三個崗位服務,且運送礦泉水崗位至少有一名一班志愿者的概率是.
(Ⅰ)求清掃衛(wèi)生崗位恰好一班1人、二班2人的概率;
(Ⅱ)設隨機變量為在維持秩序崗位服務的一班的志愿者的人數(shù),求分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:不等式(m-1)x2+(m-1)x+2>0的解集是R,命題q:sin x+cos x>m.如果對于任意的x∈R,命題p是真命題且命題q為假命題,求m的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在坐標原點、焦點在x軸上的橢圓,它的離心率為,且與直線x+y-1=0相交于M、N兩點,若以MN為直徑的圓經(jīng)過坐標原點,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在甲、乙兩個盒子中分別裝有標號為1、2、3、4的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個球被取出的可能性相等.
(1)求取出的兩個球上標號為相同數(shù)字的概率;
(2)求取出的兩個球上標號之積能被3整除的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)是奇函數(shù),并且在R上為增函數(shù),若0≤θ≤ 時,f(msinθ)+f(1﹣m)>0恒成立,則實數(shù)m的取值范圍是( )
A.(0,1)
B.(﹣∞,0)
C.(﹣∞,1)
D.(﹣∞, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且|MD|=|PD|,當P在圓上運動時,求點M的軌跡C的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高二年級學生會有理科生4名,其中3名男同學;文科生3名,其中有1名男同學.從這7名成員中隨機抽4人參加高中示范校驗收活動問卷調查.
(Ⅰ)設為事件“選出的4人中既有文科生又有理科生”,求事件的概率;
(Ⅱ)設為選出的4人中男生人數(shù)與女生人數(shù)差的絕對值,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com