【題目】在平面直角坐標(biāo)系中,點(diǎn),圓,以動(dòng)點(diǎn)為圓心的圓經(jīng)過(guò)點(diǎn),且圓與圓內(nèi)切.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)若直線過(guò)點(diǎn),且與曲線交于兩點(diǎn),則在軸上是否存在一點(diǎn),使得軸平分?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)(2)在軸上存在一點(diǎn),使得軸平分.

【解析】試題分析:(1)根據(jù)兩圓內(nèi)切得,再根據(jù)橢圓定義得動(dòng)點(diǎn)的軌跡的方程;(2)軸平分,就是直線的斜率相反,設(shè)直線,根據(jù)斜率坐標(biāo)公式得,將直線方程與橢圓方程聯(lián)立方程組,結(jié)合韋達(dá)定理代入化簡(jiǎn)可得,即得

試題解析:解:(Ⅰ)圓的方程可化為: ,

故圓心,半徑,

,所以點(diǎn)在圓內(nèi).

又由已知得圓的半徑,由圓與圓內(nèi)切可得,圓內(nèi)切于圓,即,

所以,

故點(diǎn)的軌跡,即曲線是以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓.

顯然,所以,

故曲線的方程為

(Ⅱ)設(shè),當(dāng)直線的斜率不為時(shí),設(shè)直線,

代入得: , 恒成立.

由根與系數(shù)的關(guān)系可得, ,

設(shè)直線的斜率分別為,則由得,

.

,將代入得

因此,故存在滿足題意.

當(dāng)直線的斜率為時(shí),直線為軸,取,滿足,

綜上,在軸上存在一點(diǎn),使得軸平分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1= ,an= (n≥2,n∈N+).
(1)求a2 , a3 , a4的值,并猜想數(shù)列{an}的通項(xiàng)公式an
(2)用數(shù)學(xué)歸納法證明你猜想的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{fn(x)}滿足f1(x)= (x>0),fn+1(x)=f1[fn(x)],
(1)求f2(x),f3(x),并猜想fn(x)的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明對(duì)fn(x)的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知( n的展開式中,第三項(xiàng)的系數(shù)為144.
(1)求該展開式中所有偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和;
(2)求該展開式的所有有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 + +…+ =an﹣1(n∈N*),求數(shù)列{nbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)g(x)= 是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對(duì)任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】醫(yī)院到某社區(qū)檢查老年人的體質(zhì)健康情況,從該社區(qū)全體老人中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(jī)(百分制)如下:65,78,90,86,52,87,72,86,87,98,88,86.根據(jù)老年人體質(zhì)健康標(biāo)準(zhǔn),成績(jī)不低于80的為優(yōu)良.
(1)將頻率視為概率,根據(jù)樣本估計(jì)總體的思想,在該社區(qū)全體老年人中任選3人進(jìn)行體質(zhì)健康測(cè)試,求至少有1人成績(jī)是“優(yōu)良”的概率;
(2)從抽取的12人中隨機(jī)選取3人,記ξ表示成績(jī)“優(yōu)良”的人數(shù),求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),若f(x)滿足 >0,f(2﹣x)=f(x)e22x則下列判斷一定正確的是(
A.f(1)<f(0)
B.f(3)>e3f(0)
C.f(2)>ef(0)
D.f(4)<e4f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,短軸長(zhǎng)為 ,過(guò)右焦點(diǎn)F的直線l與C相交于A,B兩點(diǎn).O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)P在橢圓C上,且 = + ,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案