【題目】已知函數(shù)g(x)= 是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實數(shù)k的取值范圍.

【答案】
(1)解:∵g(x)= 是定義在R上的奇函數(shù),

∴由g(0)=0得1﹣a=0,得a=1,

則g(x)= ,經檢驗g(x)是奇函數(shù),

由f(﹣1)=f(1)得lg(101+1)﹣b=lg(10+1)+b,

即2b=lg( × )=lg( )=﹣1,

即b=﹣ ,則f(x)=lg(10x+1)﹣ x,經檢驗f(x)是偶函數(shù)

∴a+b=


(2)解:∵g(x)= =2x ,且g(x)在(﹣∞,+∞)單調遞增,且g(x)為奇函數(shù).

∴由g(t2﹣2t)+g(2t2﹣k)>0恒成立,得

g(t2﹣2t)>﹣g(2t2﹣k)=g(﹣2t2+k),

∴t2﹣2t>﹣2t2+k,在t∈[0,+∞)上恒成立

即3t2﹣2t>k,在t∈[0,+∞)上恒成立

令F(x)=3t2﹣2t,在[0,+∞)的最小值為F( )=﹣

∴k<


【解析】(1)根據(jù)函數(shù)奇偶性的定義建立方程進行求解即可.(2)根據(jù)函數(shù)奇偶性和單調性的關系,將不等式進行轉化求解即可.
【考點精析】認真審題,首先需要了解函數(shù)的奇偶性(偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱),還要掌握函數(shù)奇偶性的性質(在公共定義域內,偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= +x在x=1處的切線方程為2x﹣y+b=0.
(1)求實數(shù)a,b的值;
(2)設函數(shù)g(x)=f(x)+ x2﹣kx,且g(x)在其定義域上存在單調遞減區(qū)間(即g′(x)<0在其定義域上有解),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個命題正確的個數(shù)(
①用反證法證明數(shù)學命題時首先應該做出與命題結論相矛盾的假設.否定“自然數(shù)a,b,c中恰有一個奇數(shù)”時正確的反設為“自然數(shù)a,b,c中至少有兩個奇數(shù)或都是偶數(shù)”;
②在復平面內,表示兩個共軛復數(shù)的點關于實軸對稱;
③在回歸直線方程 =﹣0.3x+10中,當變量x每增加一個單位時,變量 平均增加0.3個單位;
④拋物線y=x2過點( ,2)的切線方程為2x﹣y﹣1=0.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)同時滿足①對于定義域上的任意x,恒有f(x)+f(﹣x)=0;②對于定義域上的任意x1、x2 , 當x1≠x2時,恒有 <0,則稱函數(shù)f(x)為“理想函數(shù)”.給出下列三個函數(shù)中:(1)f(x)= ;(2)f(x)=x+1;(3)f(x)= ,能被稱為“理想函數(shù)”的有(填相應的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,圓,以動點為圓心的圓經過點,且圓與圓內切.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)若直線過點,且與曲線交于兩點,則在軸上是否存在一點,使得軸平分?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知(x+ n的展開式中的第二項和第三項的系數(shù)相等.
(1)求n的值;
(2)求展開式中所有二項式系數(shù)的和;
(3)求展開式中所有的有理項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的長軸長為,且橢圓與圓 的公共弦長為.

(1)求橢圓的方程.

(2)經過原點作直線(不與坐標軸重合)交橢圓于 兩點, 軸于點,點在橢圓上,且,求證: , 三點共線..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=4x+a2x+3,a∈R.
(1)當a=﹣4時,且x∈[0,2],求函數(shù)f(x)的值域;
(2)若關于x的方程f(x)=0在(0,+∞)上有兩個不同實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由于某種商品開始收稅,使其定價比原定價上漲x成(即上漲率為 ),漲價后商品賣出的個數(shù)減少bx成,稅率是新價的a成,這里a,b均為常數(shù),且a<10,用A表示過去定價,B表示過去賣出的個數(shù).
(1)設售貨款扣除稅款后,剩余y元,求y關于x的函數(shù)解析式;
(2)要使y最大,求x的值.

查看答案和解析>>

同步練習冊答案