設(shè)等比數(shù)列{an}的公比為q,前n項和為Sn,若Sn-1,Sn,Sn+1成等差數(shù)列,則q=
 
考點:等比數(shù)列的前n項和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)題意和等差數(shù)列的定義可得an=an+1,再由等比數(shù)列的通項公式求出公比q.
解答: 解:因為Sn-1,Sn,Sn+1成等差數(shù)列,
所以Sn-Sn-1=Sn+1-Sn,即an=an+1,所以an+1=an•q,
解得q=1,
故答案為:1.
點評:本題考查了等比數(shù)列的通項公式,等差數(shù)列的定義,以及數(shù)列前n項與數(shù)列中項之間的關(guān)系,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線
y
b
=
kx
b
+1與圓x2+y2=100有公共點,且公共點的橫坐標和縱坐標均為整數(shù),那么這樣的直線共有( 。
A、60條B、66條
C、70條D、71條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列所給4個圖象中,與所給故事情節(jié)吻合最好的為( 。
故事:某同學早上從家里出發(fā),開始以常速步行走,后害怕遲到,剩下的路勻速跑到學校.
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知直線經(jīng)過點A(6,-4),斜率為-
4
3
,求直線的點斜式和一般式方程.
(2)求過點P(1,3)且在x軸上的截距和在y軸上的截距相等的直線方程為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x>2,則函數(shù)y=-x+
1
2-x
,的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x,則f(x)的最大值為(  )
A、1
B、-1
C、
2
D、-
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正態(tài)分布總體落在區(qū)間(0.2,+∞)的概率為0.5,那么相應(yīng)的正態(tài)曲線f(x)在x=
 
 時達到最高點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集∪={1,2,3,4,5,6},集合A={1,3,4,5},B={5,6},則∁U(A∪B)=( 。
A、{1,3,4}
B、{5,6}
C、{1,3,4,5,6}
D、{2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)sin(
π
4
+θ)=
1
3
,則sin2θ等于(  )
A、-
7
9
B、
2
3
C、
2
9
D、
2
6

查看答案和解析>>

同步練習冊答案