【題目】1927年德國漢堡大學(xué)的學(xué)生考拉茲提出一個猜想:對于每一個正整數(shù),如果它是奇數(shù),對它乘3再加1,如果它是偶數(shù),對它除以2,這樣循環(huán),最終結(jié)果都能得到1.該猜想看上去很簡單,但有的數(shù)學(xué)家認(rèn)為“該猜想任何程度的解決都是現(xiàn)代數(shù)學(xué)的一大進(jìn)步,將開辟全新的領(lǐng)域至于如此簡單明了的一個命題為什么能夠開辟一個全新的領(lǐng)域,這大概與它其中蘊(yùn)含的奇偶?xì)w一思想有關(guān).如圖是根據(jù)考拉茲猜想設(shè)計(jì)的一個程序框圖,則①處應(yīng)填寫的條件及輸出的結(jié)果分別為
A. 是偶數(shù)?;6 B. 是偶數(shù)?;8
C. 是奇數(shù)?;5 D. 是奇數(shù)?;7
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)f(x)=sin(2x+φ)(|φ|< )的圖象上的所有點(diǎn)向左平移 個單位長度,得到函數(shù)y=g(x)的圖象,且g(﹣x)=g(x),則( )
A.y=g(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對稱
B.y=g(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對稱
C.y=g(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對稱
D.y=g(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),已知定義在R上的函數(shù)在區(qū)間內(nèi)有一個零點(diǎn), 為的導(dǎo)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)設(shè),函數(shù),求證: ;
(Ⅲ)求證:存在大于0的常數(shù),使得對于任意的正整數(shù),且 滿足.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A={x|1≤x≤5},B={x|2≤x≤6},
(1)若x∈A,y∈B且均為整數(shù),求x>y的概率.
(2)若x∈A,y∈B且均為實(shí)數(shù),求x>y的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2lnx,h(x)=x2﹣x+a.
(1)其求函數(shù)f(x)的極值;
(2)設(shè)函數(shù)k(x)=f(x)﹣h(x),若函數(shù)k(x)在[1,3]上恰有兩個不同零點(diǎn)求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機(jī)抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(1﹣k)x﹣k恰有一個零點(diǎn)在區(qū)間(2,3)內(nèi),則實(shí)數(shù)k的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p: =1表示雙曲線方程,命題q:函數(shù)f(m)= 有意義.若p∨q為真,p∧q為假,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓x2+y2=1上任意一點(diǎn)P,過點(diǎn)P作兩直線分別交圓于A,B兩點(diǎn),且∠APB=60°,則|PA|2+|PB|2的取值范圍為___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com