【題目】已知函數(shù)f(x)=x2﹣2lnx,h(x)=x2﹣x+a.
(1)其求函數(shù)f(x)的極值;
(2)設函數(shù)k(x)=f(x)﹣h(x),若函數(shù)k(x)在[1,3]上恰有兩個不同零點求實數(shù)a的取值范圍.
【答案】
(1)解:∵f′(x)=2x﹣ ,令f′(x)=0,∵x>0,∴x=1,
所以f(x)的極小值為1,無極大值
(2)解:∵
x | (0,1) | 1 | (1,+∞) |
f′(x) | _ | 0 | + |
f(x) | 減 | 1 | 增 |
又∵k(x)=f(x)﹣g(x)=﹣2lnx+x﹣a,
∴k′(x)=﹣ +1,
若k′(x)=0,則x=2
當x∈[1,2)時,f′(x)<0;
當x∈(2,3]時,f′(x)>0.
故k(x)在x∈[1,2)上遞減,在x∈(2,3]上遞增.
∴ ,∴ ,∴2﹣2ln2<a≤3﹣2ln3.
所以實數(shù)a的取值范圍是:(2﹣2ln2,3﹣2ln3]
【解析】(I)先在定義域內(nèi)求出f′(x)=0的值,再討論滿足f′(x)=0的點附近的導數(shù)的符號的變化情況,來確定極值;(2)先求出函數(shù)k(x)的解析式,然后研究函數(shù)k(x)在[1,3]上的單調(diào)性,根據(jù)函數(shù)k(x)在[1,3]上恰有兩個不同零點,建立不等關系 ,最后解之即可.
【考點精析】掌握利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導數(shù)是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.
科目:高中數(shù)學 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每隔30 min從該生產(chǎn)線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內(nèi)依次抽取的16個零件的尺寸:
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計算得, , , ,其中為抽取的第個零件的尺寸, .
(1)求 的相關系數(shù),并回答是否可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變。ㄈ,則可以認為零件的尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變小).
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.
(。⿵倪@一天抽檢的結果看,是否需對當天的生產(chǎn)過程進行檢查?
(ⅱ)在之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產(chǎn)線當天生產(chǎn)的零件尺寸的均值與標準差.(精確到0.01)
附:樣本 的相關系數(shù), .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為等差數(shù)列,前n項和為, 是首項為2的等比數(shù)列,且公比大于0, ,, .
(Ⅰ)求和的通項公式;
(Ⅱ)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在長方體ABCD﹣A1B1C1D1中,AB=5,AD=8,AA1=4,M為B1C1上一點且B1M=2,點N在線段A1D上,A1D⊥AN.
(1)求直線A1D與AM所成角的余弦值;
(2)求直線AD與平面ANM所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】1927年德國漢堡大學的學生考拉茲提出一個猜想:對于每一個正整數(shù),如果它是奇數(shù),對它乘3再加1,如果它是偶數(shù),對它除以2,這樣循環(huán),最終結果都能得到1.該猜想看上去很簡單,但有的數(shù)學家認為“該猜想任何程度的解決都是現(xiàn)代數(shù)學的一大進步,將開辟全新的領域至于如此簡單明了的一個命題為什么能夠開辟一個全新的領域,這大概與它其中蘊含的奇偶歸一思想有關.如圖是根據(jù)考拉茲猜想設計的一個程序框圖,則①處應填寫的條件及輸出的結果分別為
A. 是偶數(shù)?;6 B. 是偶數(shù)?;8
C. 是奇數(shù)?;5 D. 是奇數(shù)?;7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中, 為正三角形,平面平面, , , .
(Ⅰ)求證:平面平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)在棱上是否存在點,使得平面?若存在,請確定點的位置并證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=﹣3x2+a(6﹣a)x+b,a,b為實數(shù).
(1)當b=﹣6時,解關于a的不等式f(1)>0;
(2)若不等式f(x)>0的解集為(﹣1,3),求實數(shù)a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com