【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關:
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
【答案】(1)0.62.(2)有99%的把握(3)新養(yǎng)殖法優(yōu)于舊養(yǎng)殖法.
【解析】試題分析:(1)根據(jù)頻率分布直方圖中小長方形面積等于對應概率,計算A的概率;(2)將數(shù)據(jù)填入對應表格,代入卡方公式,計算,對照參考數(shù)據(jù)可作出判斷;(3)先從均值(或中位數(shù))比較大小,越大越好,再從數(shù)據(jù)分布情況看穩(wěn)定性,越集中越好,綜上可得新養(yǎng)殖法優(yōu)于舊養(yǎng)殖法.
試題解析:解:(1)舊養(yǎng)殖法的箱產(chǎn)量低于50kg的頻率為
(0.012+0.014+0.024+0.034+0.040)×5=0.62
因此,事件A的概率估計值為0.62.
(2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表
箱產(chǎn)量<50kg | 箱產(chǎn)量≥50kg | |
舊養(yǎng)殖法 | 62 | 38 |
新養(yǎng)殖法 | 34 | 66 |
K2=
由于15.705>6.635,故有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關.
(3)箱產(chǎn)量的頻率分布直方圖平均值(或中位數(shù))在45kg到50kg之間,且新養(yǎng)殖法的箱產(chǎn)量分布集中程度較舊養(yǎng)殖法的箱產(chǎn)量分布集中程度高,因此,可以認為新養(yǎng)殖法的箱產(chǎn)量較高且穩(wěn)定,從而新養(yǎng)殖法優(yōu)于舊養(yǎng)殖法.
點睛:(1)頻率分布直方圖中小長方形面積等于對應概率,所有小長方形面積之和為1.
(2)頻率分布直方圖中均值等于組中值與對應概率乘積的和.
(3)均值大小代表水平高低,方差大小代表穩(wěn)定性.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。D、E、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐。當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標為(0,1).當m變化時,解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的離心率為,圓心在軸的正半軸上的圓與雙曲線的漸近線相切,且圓的半徑為2,則以圓的圓心為焦點的拋物線的標準方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】1927年德國漢堡大學的學生考拉茲提出一個猜想:對于每一個正整數(shù),如果它是奇數(shù),對它乘3再加1,如果它是偶數(shù),對它除以2,這樣循環(huán),最終結果都能得到1.該猜想看上去很簡單,但有的數(shù)學家認為“該猜想任何程度的解決都是現(xiàn)代數(shù)學的一大進步,將開辟全新的領域至于如此簡單明了的一個命題為什么能夠開辟一個全新的領域,這大概與它其中蘊含的奇偶歸一思想有關.如圖是根據(jù)考拉茲猜想設計的一個程序框圖,則①處應填寫的條件及輸出的結果分別為
A. 是偶數(shù)?;6 B. 是偶數(shù)?;8
C. 是奇數(shù)?;5 D. 是奇數(shù)?;7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在x∈[ ,2]上,函數(shù)f(x)=x2+px+q與g(x)= + 在同一點取得相同的最小值,那么f(x)在x∈[ ,2]上的最大值是( )
A.
B.4
C.8
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 等比數(shù)列{bn}的各項均為正數(shù),滿足:a1=b1=1,a5=b3 , 且S3=9.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求 + +…+ 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將圓x2+y2=1 每一點的,橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得到曲線C.
(1)寫出C的參數(shù)方程;
(2)設直線l:2x+y-2=0 與C的交點為P1,P2 ,以坐標原點為極點, x 軸的正半軸為極軸建立極坐標系,求線段 P1P2 的中點且與 l 垂直的直線的極坐標方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com