【題目】已知為正項(xiàng)數(shù)列的前n項(xiàng)和,且滿足.

(1)求出,

(2)猜想的通項(xiàng)公式并給出證明.

【答案】(1) (2)

【解析】試題分析:(1)根據(jù)利用遞推公式, 代入即可求出;(2)由(1)猜想的通項(xiàng)公式,可由,化簡(jiǎn)整理,即可得數(shù)列{an}是首項(xiàng)a1=1,公差d=1的等差數(shù)列,進(jìn)而可得結(jié)論.

試題解析:(1)由Sn an(n∈N)(2)

可得a1 a1,解得a1=1,S2a1a2 a2,解得a2=2,

同理a3=3,a4=4,

(2)由(1)猜想ann.

證明:由Sn an

當(dāng)n≥2時(shí),Sn-1 an-1, ②

①-②得(anan-1-1)(anan-1)=0,

anan-1≠0,∴anan-1=1,又a1=1,故數(shù)列{an}是首項(xiàng)a1=1,公差d=1的等差數(shù)列,故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉行的“國(guó)際馬拉松賽”,舉辦單位在活動(dòng)推介晚會(huì)上進(jìn)行嘉賓現(xiàn)場(chǎng)抽獎(jiǎng)活動(dòng),抽獎(jiǎng)盒中裝有6個(gè)大小相同的小球,分別印有“快樂(lè)馬拉松”和“美麗綠城行”兩種標(biāo)志,搖勻后,參加者每次從盒中同時(shí)抽取兩個(gè)小球(取出后不再放回),若抽到的兩個(gè)球都印有“快樂(lè)馬拉松”標(biāo)志即可獲獎(jiǎng).并停止取球;否則繼續(xù)抽取,第一次取球就抽中獲一等獎(jiǎng),第二次取球抽中獲二等獎(jiǎng),第三次取球抽中獲三等獎(jiǎng),沒(méi)有抽中不獲獎(jiǎng).活動(dòng)開始后,一位參賽者問(wèn):“盒中有幾個(gè)印有‘快樂(lè)馬拉松’的小球?”主持人說(shuō):“我只知道第一次從盒中同時(shí)抽兩球,不都是‘美麗綠城行’標(biāo)志的概率是

(1)求盒中印有“快樂(lè)馬拉松”小球的個(gè)數(shù);

(2)若用表示這位參加者抽取的次數(shù),求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)研,某超市一種玩具在過(guò)去一個(gè)月(按30天)的銷售量(件)與價(jià)格(元)均為時(shí)間(天)的函數(shù),且銷售量近似滿足,價(jià)格近似滿足。

1)試寫出該種玩具的日銷售額與時(shí)間, )的函數(shù)關(guān)系式;

2)求該種玩具的日銷售額的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是正方體ABCD-A1B1C1D1中BC1上的動(dòng)點(diǎn),下列說(shuō)法:

①AP⊥B1C;②BP與CD1所成的角是60°;③三棱錐的體積為定值;④B1P∥平面D1AC;⑤二面角P-AB-C的平面角為45°.

其中正確說(shuō)法的個(gè)數(shù)有 ( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)我市“創(chuàng)建宜居港城,建設(shè)美麗莆田”,某環(huán)保部門開展以“關(guān)愛(ài)木蘭溪,保護(hù)母親河”為主題的環(huán)保宣傳活動(dòng),將木蘭溪流經(jīng)市區(qū)河段分成段,并組織青年干部職工對(duì)每一段的南、北兩岸進(jìn)行環(huán)保綜合測(cè)評(píng),得到分值數(shù)據(jù)如下表:

南岸

77

92

84

86

74

76

81

71

85

87

北岸

72

87

78

83

83

85

75

89

90

95

(Ⅰ)記評(píng)分在以上(包括)為優(yōu)良,從中任取一段,求在同一段中兩岸環(huán)保評(píng)分均為優(yōu)良的概率;

(Ⅱ)根據(jù)表中數(shù)據(jù)完成下面莖葉圖;

)分別估計(jì)兩岸分值的中位數(shù),并計(jì)算它們的平均值,試從計(jì)算結(jié)果分析兩岸環(huán)保情況,哪邊保護(hù)更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校3000名學(xué)生進(jìn)行一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“優(yōu)秀”、“良好”、“及格”、“不及格”四個(gè)等級(jí),現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下所示.

等級(jí)

不及格

及格

良好

優(yōu)秀

得分

頻數(shù)

6

24

1)求的值;

2)試估計(jì)該校安全意識(shí)測(cè)試評(píng)定為優(yōu)秀的學(xué)生人數(shù);

3)已知已采用分層抽樣的方法,從評(píng)定等級(jí)為優(yōu)秀良好的學(xué)生中任選6人進(jìn)行強(qiáng)化培訓(xùn);現(xiàn)再?gòu)倪@6人中任選2人參加市級(jí)校園安全知識(shí)競(jìng)賽,求選取的2人中有1人為優(yōu)秀的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的多面體中, 平面

1)在上求作點(diǎn),使平面,請(qǐng)寫出作法并說(shuō)明理由;

2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)函數(shù),若的極值點(diǎn),求的值并討論的單調(diào)性;

(2)函數(shù)有兩個(gè)不同的極值點(diǎn),其極小值為為,試比較的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、分別是橢圓 的左、右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn),且.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于兩點(diǎn),若,其中為坐標(biāo)原點(diǎn),判斷到直線的距離是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案