【題目】在如圖所示的多面體中, 平面,

1)在上求作點(diǎn),使平面,請(qǐng)寫(xiě)出作法并說(shuō)明理由;

2)求三棱錐的高.

【答案】(1)詳見(jiàn)解析2.

【解析】試題分析:(1)由題意,因此只需,就可推出平面,而延長(zhǎng)線與交點(diǎn)恰為的中點(diǎn)因此作法為先取的中點(diǎn),再連結(jié),交.證法為先由線線平行證得線面平行,再由線面平行證得面面平行,最后由面面平行證得線面平行.(2)求三棱錐的高,可由等體積法求得:因?yàn)?/span>,而平面,所以,這樣只需求出兩個(gè)三角形面積,代入化簡(jiǎn)即得三棱錐的高.

試題分析:解:(1)取的中點(diǎn),連結(jié),交,連結(jié).此時(shí)為所求作的點(diǎn).

下面給出證明:

,∴,又,∴四邊形是平行四邊形,

.

平面平面,∴平面;

平面 平面,∴平面.

又∵平面平面

∴平面平面,

又∵平面,∴平面.

(2)在等腰梯形中,∵,

∴可求得梯形的高為,從而的面積為.

平面,∴是三棱錐的高.

設(shè)三棱錐的高為.

,可得,

,解得,

故三棱錐的高為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線與直線平行,且,其中.

(Ⅰ)求的值,并求出函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)函數(shù),對(duì)于正實(shí)數(shù),若,使得成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方體ABCDA1B1C1D1中,E,F,E1F1分別是棱AB,ADB1C1,C1D1的中點(diǎn),

求證:(1) ;

(2)∠EA1F=∠E1CF1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為正項(xiàng)數(shù)列的前n項(xiàng)和,且滿足.

(1)求出,

(2)猜想的通項(xiàng)公式并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某校高三上學(xué)期期末數(shù)學(xué)考試成績(jī)中,隨機(jī)抽取了名學(xué)生的成績(jī)得到如圖所示的頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計(jì)該校高三學(xué)生本次數(shù)學(xué)考試的平均分;

(2)若用分層抽樣的方法從分?jǐn)?shù)在的學(xué)生中共抽取人,該人中成績(jī)?cè)?/span>的有幾人?

(3)在(2)中抽取的人中,隨機(jī)抽取人,求分?jǐn)?shù)在人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)高二年級(jí)開(kāi)設(shè)五門(mén)大學(xué)先修課程,其中屬于數(shù)學(xué)學(xué)科的有兩門(mén),分別是線性代數(shù)和微積分,其余三門(mén)分別為大學(xué)物理,商務(wù)英語(yǔ)以及文學(xué)寫(xiě)作,年級(jí)要求每名學(xué)生只能選修其中一科,該校高二年級(jí)600名學(xué)生各科選課人數(shù)統(tǒng)計(jì)如下表:

其中選修數(shù)學(xué)學(xué)科的人數(shù)所占頻率為0.6,為了了解學(xué)生成績(jī)與選課情況之間的關(guān)系,用分層抽樣的方法從這600名學(xué)生中抽取10人進(jìn)行分析.

(1)求的取值以及抽取的10人中選修商務(wù)英語(yǔ)的學(xué)生人數(shù);

(2)選出的10名學(xué)生中恰好包含甲乙兩名同學(xué),其中甲同學(xué)選修的是線性代數(shù),乙同學(xué)選修的是大學(xué)物理,現(xiàn)從線性代數(shù)和大學(xué)物理兩個(gè)學(xué)科中隨機(jī)抽取3人,求這3人中正好有甲乙兩名同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)均相等的正四棱錐中, 為底面正方形的重心, 分別為側(cè)棱的中點(diǎn),有下列結(jié)論:

平面;②平面平面;③;

④直線與直線所成角的大小為.

其中正確結(jié)論的序號(hào)是__________.(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線C的極坐標(biāo)方程為ρ4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過(guò)點(diǎn)M1,0),傾斜角為

)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;

)若曲線C經(jīng)過(guò)伸縮變換后得到曲線C′,且直線l與曲線C′交于A,B兩點(diǎn),求|MA|+|MB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平面平面,四邊形是正方形,四邊形是菱形,且,,點(diǎn)、分別為邊、的中點(diǎn),點(diǎn)是線段上的動(dòng)點(diǎn).

(1)求證:

(2)求三棱錐的體積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案