【題目】某企業(yè)為打入國(guó)際市場(chǎng),決定從兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬(wàn)美元)

其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),為待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料價(jià)格決定,預(yù)計(jì).另外,年銷售產(chǎn)品時(shí)需上交萬(wàn)美元的特別關(guān)稅.假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去.

(1)寫出該廠分別投資生產(chǎn)兩種產(chǎn)品的年利潤(rùn)與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并指明其定義域;

(2)如何投資才可獲得最大年利潤(rùn)?請(qǐng)你做出規(guī)劃.

【答案】(1)詳見解析(2)詳見解析

【解析】

試題(1)生產(chǎn)產(chǎn)品的年利潤(rùn)每件產(chǎn)品銷售價(jià)銷售量 (年固定成本每件產(chǎn)品成本銷售量);同理,生產(chǎn)產(chǎn)品的年利潤(rùn)也可求得.(2),,所以是增函數(shù),,易知時(shí),有最大值;二次函數(shù),易求得當(dāng)時(shí),有最大值.的最大值和的最大值作差,比較可得何時(shí)投資哪種產(chǎn)品獲得年利潤(rùn)最大.

試題解析:(1)設(shè)年銷售量為件,按利潤(rùn)的計(jì)算公式,得生產(chǎn)、兩產(chǎn)品的年利潤(rùn)分別為: ,;, ,且.

2)因?yàn)?/span>,所以,所以為增函數(shù),,所以時(shí),生產(chǎn)產(chǎn)品有最大利潤(rùn)為:(萬(wàn)美元)., ,所以時(shí),生產(chǎn)產(chǎn)品有最大利潤(rùn)為(萬(wàn)美元) ,作差比較:,,得;令,得;令,得.所以當(dāng)時(shí),投資生產(chǎn)產(chǎn)品件獲得最大年利潤(rùn);當(dāng)時(shí),投資生產(chǎn)產(chǎn)品件獲得最大年利潤(rùn);當(dāng)時(shí),投資生產(chǎn)產(chǎn)品和產(chǎn)品獲得的最大利潤(rùn)一樣.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形與矩形全等,二面角為直二面角,中點(diǎn),所成角為,且,則( ).

A. 1 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù).

(1)求函數(shù)的極值;

(2)設(shè)函數(shù),若存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),且離心率為.過拋物線上一點(diǎn)的切線交橢圓,兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在直線,使得,若存在,求出的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別,過的直線l交橢圓于A,B兩點(diǎn),若的最大值為5,則b的值為( )

A. 1 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知M(x1y1)是橢圓=1(a>b>0)上任意一點(diǎn),F為橢圓的右焦點(diǎn).

(1)若橢圓的離心率為e,試用ea,x1表示|MF|,并求|MF|的最值;

(2)已知直線m與圓x2y2b2相切,并與橢圓交于A、B兩點(diǎn),且直線m與圓的切點(diǎn)Qy軸右側(cè),若a=4,求△ABF的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四面體PABC中,D、EF分別是AB、BC、CA的中點(diǎn),下列四個(gè)結(jié)論不成立的是 (  )

A. BC∥平面PDF B. DF⊥平面PAE

C. 平面PDF⊥平面PAE D. 平面PDE⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下給出五個(gè)命題,其中真命題的序號(hào)為______

①函數(shù)在區(qū)間上存在一個(gè)零點(diǎn),則的取值范圍是

②“任意菱形的對(duì)角線一定相等”的否定是“菱形的對(duì)角線一定不相等”;

;

④若,則;

⑤“”是“成等比數(shù)列”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)動(dòng)點(diǎn)到兩定點(diǎn)的距離之和為4.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)已知直線的傾斜角均為,直線過坐標(biāo)原點(diǎn)且與曲線相交于, 兩點(diǎn),直線過點(diǎn)且與曲線是交于, 兩點(diǎn),求證:對(duì)任意, .

查看答案和解析>>

同步練習(xí)冊(cè)答案