【題目】已知橢圓過點,且離心率為.過拋物線上一點的切線交橢圓,兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在直線,使得,若存在,求出的方程;若不存在,請說明理由.

【答案】(Ⅰ)橢圓(Ⅱ)見解析

【解析】

(Ⅰ)根據(jù)已知條件列有關(guān)a、bc的方程組,求出ab的值,即可得出橢圓C1的方程;

(Ⅱ)設直線l的方程為ykx+t,先利用導數(shù)寫出直線l的方程,于是得到k2x0,,將直線l的方程與橢圓C1的方程聯(lián)立,列出韋達定理,由并代入韋達定理,通過計算得出t的值,可得出x0的值,從而可得出直線l的方程.

(Ⅰ)由題知,得,

所以橢圓,

(Ⅱ)設的方程:,

求導可得的方程:,

. 由,得.

所以,

由題意可知:

即(4t2-4)(k2+1)-8k2t(t-1)+(t-1)2(4k2+1)=0,

化簡有5t2-2t-3=0,所以t=1或t=,

此時,l方程:,經(jīng)檢驗,直線l符合題意

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)有兩個零點-31,且有最小值-4.

1)求的解析式;

2)寫出函數(shù)單調(diào)區(qū)間;

3)令,若,證明:上有唯一零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 底面 , , , 為棱的中點.

)求證:

)求證:平面平面

)試判斷與平面是否平行?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)(x∈R)滿足f(-x)=2-f(x),若函數(shù)yyf(x)圖象的交點為(x1,y1),(x2,y2),…,(xm,ym),則 (xiyi)=(  )

A. 0 B. m

C. 2m D. 4m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列的前項和為,數(shù)列的前項和為,下列說法錯誤的是( )

A. 有最大值,則也有最大值

B. 有最大值,則也有最大值

C. 若數(shù)列不單調(diào),則數(shù)列也不單調(diào)

D. 若數(shù)列不單調(diào),則數(shù)列也不單調(diào)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年2月22日上午,山東省省委、省政府在濟南召開山東省全面展開新舊動能轉(zhuǎn)換重大工程動員大會,會議動員各方力量,迅速全面展開新舊動能轉(zhuǎn)換重大工程.某企業(yè)響應號召,對現(xiàn)有設備進行改造,為了分析設備改造前后的效果,現(xiàn)從設備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了200件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值,若該項質(zhì)量指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖3是設備改造前的樣本的頻率分布直方圖,表1是設備改造后的樣本的頻數(shù)分布表.

表1:設備改造后樣本的頻數(shù)分布表

(1)完成下面的列聯(lián)表,并判斷是否有99%的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與設備改造有關(guān);

(2)根據(jù)圖3和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對改造前后設備的優(yōu)劣進行比較;

(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對合格品進行等級細分,質(zhì)量指標值落在內(nèi)的定為一等品,每件售價240元;質(zhì)量指標值落在內(nèi)的定為二等品,每件售價180元;其它的合格品定為三等品,每件售價120元.根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.現(xiàn)有一名顧客隨機購買兩件產(chǎn)品,設其支付的費用為(單位:元),求的分布列和數(shù)學期望.

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為打入國際市場,決定從兩種產(chǎn)品中只選擇一種進行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬美元)

其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),為待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料價格決定,預計.另外,年銷售產(chǎn)品時需上交萬美元的特別關(guān)稅.假設生產(chǎn)出來的產(chǎn)品都能在當年銷售出去.

(1)寫出該廠分別投資生產(chǎn)兩種產(chǎn)品的年利潤與生產(chǎn)相應產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并指明其定義域;

(2)如何投資才可獲得最大年利潤?請你做出規(guī)劃.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設H1(x)=max,H2(x)=min (max表示p,q中的較大值,min表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=(  )

A.16B.-16

C.a2-2a-16D.a2+2a-16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某保險公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).

(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;

(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

查看答案和解析>>

同步練習冊答案