【題目】某居民小區(qū)為緩解業(yè)主停車難的問題,擬對小區(qū)內一塊扇形空地進行改建.如圖所示,平行四邊形區(qū)域為停車場,其余部分建成綠地,點在圍墻弧上,點和點分別在道路和道路上,且米,,設.
(1)求停車場面積關于的函數關系式,并指出的取值范圍;
(2)當為何值時,停車場面積最大,并求出最大值(精確到平方米).
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,=λ.
(1)若λ=1,求直線DB1與平面A1C1D所成角的正弦值;
(2)若二面角B1- A1C1-D的大小為60°,求實數λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌奶茶公司計劃在A地開設若干個連鎖加盟店,經調查研究,加盟店的個數x與平均每個店的月營業(yè)額y(萬元)具有如下表所示的數據關系:
x | 2 | 4 | 6 | 8 | 10 |
y | 20.9 | 20.2 | 19 | 17.8 | 17.1 |
(1)求y關于x的線性回歸方程;
(2)根據(1)中的結果分析,為了保證平均每個加盟店的月營業(yè)額不少于14.6萬元,則A地開設加盟店的個數不能超過幾個?
參考公式:線性回歸方程中的斜率和截距的最小二乘估計公式分別為
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓:的焦距為,直線截圓:與橢圓所得的弦長之比為,橢圓與軸正半軸的交點分別為.
(1)求橢圓的標準方程;
(2)設點(且)為橢圓上一點,點關于軸的對稱點為,直線,分別交軸于點,.試判斷是否為定值?若是求出該定值,若不是定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐中,BO、AO、CO所在直線兩兩垂直,且AO=CO,∠BAO=60°,E是AC的中點,三棱錐的體積為
(1)求三棱錐的高;
(2)在線段AB上取一點D,當D在什么位置時,和的夾角大小為
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com