【題目】長方體中,FAB的中點,直線平面,.

(Ⅰ)求長方體的體積;

(Ⅱ)求二面角的余弦值的大小.

【答案】(Ⅰ)16;(Ⅱ).

【解析】

(Ⅰ)先證,再分別求出的長度,根據(jù)體積公式計算即可;

(Ⅱ)以D為坐標(biāo)原點,射線DA,DC,分別為x,y,z軸正半軸建立空間直角坐標(biāo)系,利用向量法計算二面角的余弦值即可.

1)連接BD,由平面,得,

,所以平面,所以,

在矩形ABCD中,,,

,∴,∴,

同理,則四邊形為正方形,則,

∴長方體體積;

(Ⅱ)以D為坐標(biāo)原點,射線DADC,分別為x,yz軸正半軸建立空間直角坐標(biāo)系(如圖),則,

連接AC,在矩形ABCD中,易得,又,所以平面,

則平面的法向量可取為

而平面的法向量可取,

設(shè)二面角的大小為,則

所以二面角的余弦值的大小為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某居民小區(qū)為緩解業(yè)主停車難的問題,擬對小區(qū)內(nèi)一塊扇形空地進(jìn)行改建.如圖所示,平行四邊形區(qū)域為停車場,其余部分建成綠地,點在圍墻弧上,點和點分別在道路和道路上,且米,,設(shè)

(1)求停車場面積關(guān)于的函數(shù)關(guān)系式,并指出的取值范圍;

(2)當(dāng)為何值時,停車場面積最大,并求出最大值(精確到平方米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中:①在中,,,,則解三角形只有唯一解的充要條件是:;②當(dāng)時,;③在中,若,則中一定為鈍角三角形;④扇形圓心角為銳角,周長為定值,則它面積最大時,一定有;⑤函數(shù)的單增區(qū)間為,其中真命題的序號為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著銀行業(yè)的不斷發(fā)展,市場競爭越來越激烈,顧客對銀行服務(wù)質(zhì)量的要求越來越高,銀行為了提高柜員員工的服務(wù)意識,加強(qiáng)評價管理,工作中讓顧客對服務(wù)作出評價,評價分為滿意、基本滿意、不滿意三種.某銀行為了比較顧客對男女柜員員工滿意度評價的差異,在下屬的四個分行中隨機(jī)抽出40人(男女各半)進(jìn)行分析比較.對40人一月中的顧客評價“不滿意”的次數(shù)進(jìn)行了統(tǒng)計,按男、女分為兩組,再將每組柜員員工的月“不滿意”次數(shù)分為5組:,,,得到如下頻數(shù)分布表.

分組

女柜員

2

3

8

5

2

男柜員

1

3

9

4

3

1)在答題卡所給的坐標(biāo)系中分別畫出男、女柜員員工的頻率分布直方圖;分別求出男、女柜員員工的月平均“不滿意”次數(shù)的估計值,試根據(jù)估計值比較男、女柜員員工的滿意度誰高?

2)在抽取的40名柜員員工中:從“不滿意”次數(shù)不少于20的員工中隨機(jī)抽取3人,并用X表示隨機(jī)抽取的3人中女柜員工的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點離心率為.

1)求的方程;

2)如圖,若菱形內(nèi)接于橢圓,求菱形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午假期即將到來,永輝超市舉辦濃情端午高考加油有獎促銷活動,凡持高考準(zhǔn)考證考生及家長在端年節(jié)期間消費每超過600元(含600元),均可抽獎一次,抽獎箱里有10個形狀、大小完全相同的小球(其中紅球有3個,黑球有7個),抽獎方案設(shè)置兩種,顧客自行選擇其中的一種方案.

方案一:

從抽獎箱中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.

方案二:

從抽獎箱中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200.每次摸取1球,連摸3次,每摸到1

1)若小南、小開均分別消費了600元,且均選擇抽獎方案一,試求他們均享受免單優(yōu)惠的概率;

2)若小杰消費恰好滿1000元,試比較說明小杰選擇哪一種抽獎方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某大學(xué)自主招生考生中,所有選報Ⅱ類志向的考生全部參加了數(shù)學(xué)與邏輯閱讀與表達(dá)兩個科目的考試,成績分為A,B,C,D,E五個等級.某考場考生兩科的考試成績的數(shù)據(jù)統(tǒng)計如下圖所示,其中數(shù)學(xué)與邏輯科目的成績?yōu)?/span>B的考生有20.

1)求該考場考生中閱讀與表達(dá)科目中成績?yōu)?/span>A的人數(shù);

2)若等級A,BC,D,E分別對應(yīng)5分,4分,3分,2分,1.

i)求該考場考生數(shù)學(xué)與邏輯科目的平均分;

ii)若該考場共有7人得分大于7分,其中有210分,29分,38分,從這7中隨機(jī)抽取兩人,求兩人成績之和大于等于18的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】六位同學(xué)圍成一圈依序循環(huán)報數(shù),規(guī)定:

①第一位同學(xué)首次報出的數(shù)為0.第二位同學(xué)首次報出的數(shù)為1,之后每位同學(xué)所報出的數(shù)都是前兩位同學(xué)所報出的數(shù)之和:

②若報出的是為3的倍數(shù),則報該數(shù)的同學(xué)需拍手一次.

當(dāng)?shù)?/span>50個數(shù)被報出時,六位同學(xué)拍手的總次數(shù)為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個內(nèi)角,,所對的邊分別為,設(shè),.

1)若,求的夾角

2)若,求周長的最大值.

查看答案和解析>>

同步練習(xí)冊答案