【題目】如圖,在直三棱柱ABCA1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,=λ.
(1)若λ=1,求直線(xiàn)DB1與平面A1C1D所成角的正弦值;
(2)若二面角B1- A1C1-D的大小為60°,求實(shí)數(shù)λ的值.
【答案】(1)(2)
【解析】
(1)先根據(jù)題意建立空間直角坐標(biāo)系,求得向量的坐標(biāo)和平面A1C1D的一個(gè)法向量,再利用線(xiàn)面角的向量方法求解.
(2設(shè)D(x,y,0),根據(jù)=λ,得到D(,,0),表示=(0,4,0),=(,,-2),求得平面A1C1D的一個(gè)法向量,又易知平面A1B1C1的一個(gè)法向量,再根據(jù)二面角B1- A1C1-D的大小為60°,由|cos〈n1,n2〉|=求解.
(1)分別以AB,AC,AA1所在直線(xiàn)為x,y,z軸建立空間直角坐標(biāo)系.
則A(0,0,0),B(2,0,0),C(0,4,0),A1(0,0,2),B1(2,0,2),C1(0,4,2).
當(dāng)λ=1時(shí),D為BC的中點(diǎn),
所以D(1,2,0),=(1,-2,2),=(0,4,0),=(1,2,-2),
設(shè)平面A1C1D的法向量為n1=(x,y,z),
則得
所以取n1=(2,0,1),
又cos〈,n1〉===,
所以DB1與平面A1C1D所成角的正弦值為
(2)因?yàn)?/span>=λ,
設(shè)D(x,y,0),所以=(x-2,y,0),=(-x,4-y,0),
所以x-2=-λx,y=λ(4-y),
即x=,y=.
所以D(,,0),
所以=(0,4,0),=(,,-2),
設(shè)平面A1C1D的法向量為n1=(x,y,z),
則即
所以取n1=(λ+1,0,1).
又平面A1B1C1的一個(gè)法向量為n2=(0,0,1),
由題意得|cos〈n1,n2〉|=,
所以==,
解得λ=-1或λ=--1(不合題意,舍去),
所以實(shí)數(shù)λ的值為-1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代足球運(yùn)動(dòng)是世上開(kāi)展得最廣泛、影響最大的運(yùn)動(dòng)項(xiàng)目,有人稱(chēng)它為“世界第一運(yùn)動(dòng)”.早在2000多年前的春秋戰(zhàn)國(guó)時(shí)代,就有了一種球類(lèi)游戲“蹴鞠”,后來(lái)經(jīng)過(guò)阿拉伯人傳到歐洲,發(fā)展成現(xiàn)代足球.1863年10月26日,英國(guó)人在倫敦成立了世界上第一個(gè)足球運(yùn)動(dòng)組織——英國(guó)足球協(xié)會(huì),并統(tǒng)一了足球規(guī)則.人們稱(chēng)這一天是現(xiàn)代足球的誕生日.如圖所示,足球表面是由若干黑色正五邊形和白色正六邊形皮圍成的,我們把這些正五邊形和正六邊形都稱(chēng)為足球的面,任何相鄰兩個(gè)面的公共邊叫做足球的棱.已知足球表面中的正六邊形的面為20個(gè),則該足球表面中的正五邊形的面為______個(gè),該足球表面的棱為______條.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知多面體ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
(Ⅰ)證明:AB1⊥平面A1B1C1;
(Ⅱ)求直線(xiàn)AC1與平面ABB1所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為3的正方體ABCD-A1B1C1D1中,A1E=CF=1.
(1)求兩條異面直線(xiàn)AC1與BE所成角的余弦值;
(2)求直線(xiàn)BB1與平面BED1F所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直直角梯形ABPE所在的平面于直線(xiàn)AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)在線(xiàn)段PD上是否存在一點(diǎn)N,使得直線(xiàn)BN與平面PCD所成角的正弦值等于?若存在,試確定點(diǎn)N的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某居民小區(qū)為緩解業(yè)主停車(chē)難的問(wèn)題,擬對(duì)小區(qū)內(nèi)一塊扇形空地進(jìn)行改建.如圖所示,平行四邊形區(qū)域?yàn)橥\?chē)場(chǎng),其余部分建成綠地,點(diǎn)在圍墻弧上,點(diǎn)和點(diǎn)分別在道路和道路上,且米,,設(shè).
(1)求停車(chē)場(chǎng)面積關(guān)于的函數(shù)關(guān)系式,并指出的取值范圍;
(2)當(dāng)為何值時(shí),停車(chē)場(chǎng)面積最大,并求出最大值(精確到平方米).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體是正三棱柱(底面是正三角形的直棱柱)沿平面切除一部分所得,其中平面為原正三棱柱的底面,,點(diǎn)D為的中點(diǎn).
(1)求證:平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著銀行業(yè)的不斷發(fā)展,市場(chǎng)競(jìng)爭(zhēng)越來(lái)越激烈,顧客對(duì)銀行服務(wù)質(zhì)量的要求越來(lái)越高,銀行為了提高柜員員工的服務(wù)意識(shí),加強(qiáng)評(píng)價(jià)管理,工作中讓顧客對(duì)服務(wù)作出評(píng)價(jià),評(píng)價(jià)分為滿(mǎn)意、基本滿(mǎn)意、不滿(mǎn)意三種.某銀行為了比較顧客對(duì)男女柜員員工滿(mǎn)意度評(píng)價(jià)的差異,在下屬的四個(gè)分行中隨機(jī)抽出40人(男女各半)進(jìn)行分析比較.對(duì)40人一月中的顧客評(píng)價(jià)“不滿(mǎn)意”的次數(shù)進(jìn)行了統(tǒng)計(jì),按男、女分為兩組,再將每組柜員員工的月“不滿(mǎn)意”次數(shù)分為5組:,,,,,得到如下頻數(shù)分布表.
分組 | |||||
女柜員 | 2 | 3 | 8 | 5 | 2 |
男柜員 | 1 | 3 | 9 | 4 | 3 |
(1)在答題卡所給的坐標(biāo)系中分別畫(huà)出男、女柜員員工的頻率分布直方圖;分別求出男、女柜員員工的月平均“不滿(mǎn)意”次數(shù)的估計(jì)值,試根據(jù)估計(jì)值比較男、女柜員員工的滿(mǎn)意度誰(shuí)高?
(2)在抽取的40名柜員員工中:從“不滿(mǎn)意”次數(shù)不少于20的員工中隨機(jī)抽取3人,并用X表示隨機(jī)抽取的3人中女柜員工的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com