【題目】已知函數(shù)f(x)=|2xa|+|2x-1|(aR).

(1)當(dāng)a=-1時(shí),求f(x)2的解集;

(2)f(x)|2x+1|的解集包含集合,求實(shí)數(shù)a的取值范圍.

【答案】1;(2.

【解析】

試題

(1)代入,由,根據(jù)絕對(duì)值的幾何意義,求出滿足條件的的值即可;

(2)根據(jù)題意,把,轉(zhuǎn)化為上恒成立,求解,即可求解實(shí)數(shù)的取值范圍.

試題解析:

(1)當(dāng)a=-1時(shí),f(x)=|2x+1|+|2x-1|,f(x)≤2≤1,

上述不等式的幾何意義為數(shù)軸上點(diǎn)x到兩點(diǎn)-,距離之和小于或等于1,則-≤x≤,

即原不等式的解集為.

(2)∵f(x)≤|2x+1|的解集包含,

∴當(dāng)x∈時(shí),不等式f(x)≤|2x+1|恒成立,

∴當(dāng)x∈時(shí),|2x-a|+2x-1≤2x+1恒成立,

∴2x-2≤a≤2x+2x∈上恒成立,

∴(2x-2)max≤a≤(2x+2)min,∴0≤a≤3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)同學(xué)家開(kāi)了一個(gè)小賣部,他為了研究氣溫對(duì)熱飲飲料銷售的影響,經(jīng)過(guò)統(tǒng)計(jì),得到一個(gè)賣出的熱飲杯數(shù)與當(dāng)天氣溫的散點(diǎn)圖和對(duì)比表:

攝氏溫度

熱飲杯數(shù)

(1)從散點(diǎn)圖可以發(fā)現(xiàn),各點(diǎn)散布在從左上角到右下角的區(qū)域里。因此,氣溫與當(dāng)天熱飲銷售杯數(shù)之間成負(fù)相關(guān),即氣溫越高,當(dāng)天賣出去的熱飲杯數(shù)越少。統(tǒng)計(jì)中常用相關(guān)系數(shù)來(lái)衡量?jī)蓚(gè)變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計(jì)學(xué)認(rèn)為,對(duì)于變量,如果,那么負(fù)相關(guān)很強(qiáng);如果,那么正相關(guān)很強(qiáng);如果,那么相關(guān)性一般;如果,那么相關(guān)性較弱。請(qǐng)根據(jù)已知數(shù)據(jù),判斷氣溫與當(dāng)天熱飲銷售杯數(shù)相關(guān)性的強(qiáng)弱.

(2)(i)請(qǐng)根據(jù)已知數(shù)據(jù)求出氣溫與當(dāng)天熱飲銷售杯數(shù)的線性回歸方程;

(ii)記為不超過(guò)的最大整數(shù),如.對(duì)于(i)中求出的線性回歸方程,將視為氣溫與當(dāng)天熱飲銷售杯數(shù)的函數(shù)關(guān)系.已知?dú)鉁?/span>與當(dāng)天熱飲每杯的銷售利潤(rùn)的關(guān)系是 (單位:元),請(qǐng)問(wèn)當(dāng)氣溫為多少時(shí),當(dāng)天的熱飲銷售利潤(rùn)總額最大?

(參考公式),,

(參考數(shù)據(jù)),, .

,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,圓O,,D為圓O上任意一點(diǎn),過(guò)D作圓O的切線分別交直線E,F兩點(diǎn),連AF,BE交于點(diǎn)G,若點(diǎn)G形成的軌跡為曲線C

AF,BE斜率分別為,求的值并求曲線C的方程;

設(shè)直線l與曲線C有兩個(gè)不同的交點(diǎn)PQ,與直線交于點(diǎn)S,與直線交于點(diǎn)T,求的面積與面積的比值的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家環(huán)境標(biāo)準(zhǔn)制定的空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如表:

空氣質(zhì)量指數(shù)

050

51100

101150

151200

201300

300以上

空氣質(zhì)量等級(jí)

1級(jí)優(yōu)

2級(jí)良

3級(jí)輕

度污染

4級(jí)中度污染

5級(jí)重

度污染

6級(jí)嚴(yán)重污染

由全國(guó)重點(diǎn)城市環(huán)境監(jiān)測(cè)網(wǎng)獲得10月份某五天甲城市和乙城市的空氣質(zhì)量指數(shù)數(shù)據(jù)用莖葉圖表示如圖:

1)試根據(jù)上面的統(tǒng)計(jì)數(shù)據(jù),計(jì)算甲、乙兩個(gè)城市的空氣質(zhì)量指數(shù)的方差;

2)試根據(jù)上面的統(tǒng)計(jì)數(shù)據(jù),估計(jì)甲城市某一天空氣質(zhì)量等級(jí)為2級(jí)良的概率;

3)分別從甲城市和乙城市的統(tǒng)計(jì)數(shù)據(jù)中任取一個(gè),試求兩個(gè)城市空氣質(zhì)量等級(jí)相同的概率.供參考數(shù)據(jù):292+532+572+752+1062=23760,432+412+552+582+782=16003

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如下圖所示(收支差額=車票收入-支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(1)不改變車票價(jià)格,減少支出費(fèi)用;建議(2)不改變支出費(fèi)用,提高車票價(jià)格.下面給出的四個(gè)圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則(

A.①反映建議(2),③反映建議(1B.①反映建議(1),③反映建議(2

C.②反映建議(1),④反映建議(2D.④反映建議(1),②反映建議(2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了診斷高三學(xué)生在市一模考試中文科數(shù)學(xué)備考的狀況,隨機(jī)抽取了50名學(xué)生的市一模數(shù)學(xué)成績(jī)進(jìn)行分析,將這些成績(jī)分為九組,第一組[60,70),第二組[70,80),……,第九組[140,150],并繪制了如圖所示的頻率分布直方圖.

1)試求出的值并估計(jì)該校文科數(shù)學(xué)成績(jī)的眾數(shù)和中位數(shù);

2)現(xiàn)從成績(jī)?cè)?/span>[120,150]的同學(xué)中隨機(jī)抽取2人進(jìn)行談話,那么抽取的2人中恰好有一人的成績(jī)?cè)?/span>[130,140)中的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,焦點(diǎn)分別為,點(diǎn)是橢圓上的點(diǎn),面積的最大值是

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),是坐標(biāo)原點(diǎn),若判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng),函數(shù),證明:存在唯一的極大值點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且處的切線方程為.

(1)求的解析式,并討論其單調(diào)性.

(2)若函數(shù),證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案