【題目】某學(xué)校為了加強學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究學(xué)習(xí)的能力,他們以教材第82頁第8題的函數(shù)為基本素材,研究該函數(shù)的相關(guān)性質(zhì),取得部分研究成果如下:
①同學(xué)甲發(fā)現(xiàn):函數(shù)的定義域為;
②同學(xué)乙發(fā)現(xiàn):函數(shù)是偶函數(shù);
③同學(xué)丙發(fā)現(xiàn):對于任意的都有;
④同學(xué)丁發(fā)現(xiàn):對于任意的,都有;
⑤同學(xué)戊發(fā)現(xiàn):對于函數(shù)定義域中任意的兩個不同實數(shù),總滿足.
其中所有正確研究成果的序號是__________.
【答案】①③④
【解析】①,故①正確;② ,奇函數(shù),故②錯誤;③對于任意的, ,故③正確;④對于任意的,有,而
,故④正確;⑤對于函數(shù)定義域
中任意的兩個不同實數(shù),總滿足,即說明是
增函數(shù),但是減函數(shù),故⑤錯誤,綜上①③④
正確,故答案為①③④.
【 方法點睛】本題主要通過對多個命題真假的判斷,主要綜合考查函數(shù)的定義域、單調(diào)性、函數(shù)的奇偶性以及對數(shù)式的運算,屬于難題.這種題型綜合性較強,也是高考的命題熱點,同學(xué)們往往因為某一處知識點掌握不好而導(dǎo)致“全盤皆輸”,因此做這類題目更要細(xì)心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的自己已經(jīng)掌握的知識點入手,然后集中精力突破較難的命題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為4,動點E,F在棱上,動點P,Q分別在棱AD,CD上。若,,,(大于零),則四面體PEFQ的體積
A.與都有關(guān)B.與m有關(guān),與無關(guān)
C.與p有關(guān),與無關(guān)D.與π有關(guān),與無關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求的解析式;
(2)試判斷的單調(diào)性,并用定義法證明;
(3)若存在,使得不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在上存在最大值0,求函數(shù)在上的最大值;
(3)求證:當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點,直線,圓.
(1)求的取值范圍,并求出圓心坐標(biāo);
(2)有一動圓的半徑為,圓心在上,若動圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機構(gòu)為了解某地區(qū)中學(xué)生在校月消費情況,隨機抽取了 100名中學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)査的結(jié)果繪制的學(xué)生在校月消費金額的頻率分布直方圖.已知三個金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學(xué)生稱為“高消費群”.
(1)求的值,并求這100名學(xué)生月消費金額的樣本平均數(shù) (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“高消費群”與性別有關(guān)?
附: (其中樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,滿足Sn=2an-1(n∈N*),數(shù)列{bn}滿足nbn+1-(n+1)bn=n(n+1)(n∈N*),且b1=1.
(1)證明數(shù)列{}為等差數(shù)列,并求數(shù)列{an}和{bn}的通項公式;
(2)若cn=(-1)n-1,求數(shù)列{cn}的前n項和T2n;
(3)若dn=an,數(shù)列{dn}的前n項和為Dn,對任意的n∈N*,都有Dn≤nSn-a,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,點,分別為棱,的中點,點為上底面的中心,過,,三點的平面把正方體分為兩部分,其中含的部分為,不含的部分為,連結(jié)和的任一點,設(shè)與平面所成角為,則的最大值為
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗.
(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: ,)
參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com