【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-1(n∈N*),數(shù)列{bn}滿足nbn+1-(n+1)bn=n(n+1)(n∈N*),且b1=1.
(1)證明數(shù)列{}為等差數(shù)列,并求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cn=(-1)n-1,求數(shù)列{cn}的前n項(xiàng)和T2n;
(3)若dn=an,數(shù)列{dn}的前n項(xiàng)和為Dn,對(duì)任意的n∈N*,都有Dn≤nSn-a,求實(shí)數(shù)a的取值范圍.
【答案】(1)證明見(jiàn)解析,an=2n-1,bn=n2 (2) (3)(-∞,0]
【解析】
(1)Sn=2an﹣1(n∈N*),n≥2時(shí),an=Sn﹣Sn﹣1=2an﹣1﹣(2an﹣1﹣1),化為:an=2an﹣1.利用等比數(shù)列的通項(xiàng)公式可得an.?dāng)?shù)列{bn}滿足nbn+1﹣(n+1)bn=n(n+1)(n∈N*),化為:1,且b1=1.即可證明數(shù)列{}為等差數(shù)列,利用通項(xiàng)公式可得bn.
(2)cn=(﹣1)n﹣1(﹣1)n﹣1(﹣1)n﹣1,利用裂項(xiàng)求和方法即可得出.
(3)dn=ann2n﹣1,利用錯(cuò)位相減法可得數(shù)列{dn}的前n項(xiàng)和為Dn,又Sn=2n﹣1.代入對(duì)任意的n∈N*,都有Dn≤nSn﹣a,即可得出.
(1)Sn=2an﹣1(n∈N*),n≥2時(shí),an=Sn﹣Sn﹣1=2an﹣1﹣(2an﹣1﹣1),化為:an=2an﹣1.
n=1時(shí),a1=2a1﹣1,解得a1=1.
∴數(shù)列{an}是等比數(shù)列,公比為2.
∴an=2n﹣1.
數(shù)列{bn}滿足nbn+1﹣(n+1)bn=n(n+1)(n∈N*),
化為:1,且b1=1.
∴數(shù)列{}為等差數(shù)列,公差為1,首項(xiàng)為1.
∴1+n﹣1=n,
bn=n2.
(2)cn=(﹣1)n﹣1(﹣1)n﹣1(﹣1)n﹣1,
∴數(shù)列{cn}的前n項(xiàng)和T2n
.
(3)dn=ann2n﹣1,
數(shù)列{dn}的前n項(xiàng)和為Dn=1+2×2+3×22+……+n2n﹣1,
2Dn=2+2×22+……+(n﹣1)2n﹣1+n2n,
∴﹣Dn=1+2+22+……+2n﹣1﹣n2nn2n,
解得Dn=(n﹣1)2n+1.
Sn=2an﹣1=2n﹣1.
對(duì)任意的n∈N*,都有Dn≤nSn﹣a,
∴a≤n(2n﹣1)﹣(n﹣1)2n﹣1=2n﹣n﹣1.
令dn=2n﹣n﹣1.則dn+1﹣dn=2n+1﹣(n+1)﹣1﹣(2n﹣n﹣1)=2n﹣1>0.
∴數(shù)列{dn}單調(diào)遞增.
∴a≤(dn)min=d1=0.
∴實(shí)數(shù)a的取值范圍是(﹣∞,0].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列滿足:,且,,成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)若不等式成立的正整數(shù)恰有4個(gè),求正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解甲、乙兩校學(xué)生自主招生通過(guò)情況,從甲校抽取60人,從乙校抽取50人進(jìn)行分析。
(1)根據(jù)題目條件完成上面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為自主招生通過(guò)情況與學(xué)生所在學(xué)校有關(guān);
(2)現(xiàn)已知甲校三人在某大學(xué)自主招生中通過(guò)的概率分別為,,,用隨機(jī)變量X表示三人在該大學(xué)自主招生中通過(guò)的人數(shù),求X的分布列及期望.
參考公式:.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了加強(qiáng)學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究學(xué)習(xí)的能力,他們以教材第82頁(yè)第8題的函數(shù)為基本素材,研究該函數(shù)的相關(guān)性質(zhì),取得部分研究成果如下:
①同學(xué)甲發(fā)現(xiàn):函數(shù)的定義域?yàn)?/span>;
②同學(xué)乙發(fā)現(xiàn):函數(shù)是偶函數(shù);
③同學(xué)丙發(fā)現(xiàn):對(duì)于任意的都有;
④同學(xué)丁發(fā)現(xiàn):對(duì)于任意的,都有;
⑤同學(xué)戊發(fā)現(xiàn):對(duì)于函數(shù)定義域中任意的兩個(gè)不同實(shí)數(shù),總滿足.
其中所有正確研究成果的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一位幼兒園老師給班上k(k≥3)個(gè)小朋友分糖果.她發(fā)現(xiàn)糖果盒中原有糖果數(shù)為a0,就先從別處抓2塊糖加入盒中,然后把盒內(nèi)糖果的分給第一個(gè)小朋友;再?gòu)膭e處抓2塊糖加入盒中,然后把盒內(nèi)糖果的分給第二個(gè)小朋友;…,以后她總是在分給一個(gè)小朋友后,就從別處抓2塊糖放入盒中,然后把盒內(nèi)糖果的分給第n(n=1,2,3,…k)個(gè)小朋友.如果設(shè)分給第n個(gè)小朋友后(未加入2塊糖果前)盒內(nèi)剩下的糖果數(shù)為an.
(1)當(dāng)k=3,a0=12時(shí),分別求a1,a2,a3;
(2)請(qǐng)用an-1表示an;令bn=(n+1)an,求數(shù)列{bn}的通項(xiàng)公式;
(3)是否存在正整數(shù)k(k≥3)和非負(fù)整數(shù)a0,使得數(shù)列{an}(n≤k)成等差數(shù)列,如果存在,請(qǐng)求出所有的k和a0,如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年8月18日,舉世矚目的第18屆亞運(yùn)會(huì)在印尼首都雅加達(dá)舉行,為了豐富亞運(yùn)會(huì)志愿者的業(yè)余生活,同時(shí)鼓勵(lì)更多的有志青年加入志愿者行列,大會(huì)主辦方?jīng)Q定對(duì)150名志愿者組織一次有關(guān)體育運(yùn)動(dòng)的知識(shí)競(jìng)賽(滿分120分)并計(jì)劃對(duì)成績(jī)前15名的志愿者進(jìn)行獎(jiǎng)勵(lì),現(xiàn)將所有志愿者的競(jìng)賽成績(jī)制成頻率分布直方圖,如圖所示,若第三組與第五組的頻數(shù)之和是第二組的頻數(shù)的3倍,試回答以下問(wèn)題:
(1)求圖中的值;
(2)求志愿者知識(shí)競(jìng)賽的平均成績(jī);
(3)從受獎(jiǎng)勵(lì)的15人中按成績(jī)利用分層抽樣抽取5人,再?gòu)某槿〉?人中,隨機(jī)抽取2人在主會(huì)場(chǎng)服務(wù),求抽取的這2人中其中一人成績(jī)?cè)?/span>分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的方程, ,分別求滿足下列條件實(shí)數(shù)的取值范圍:
(1)有解;
(2)有唯一解;
(3)有兩個(gè)解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)(江蘇省南京師大附中2018屆高三高考考前模擬考試數(shù)學(xué)試題)已知等差數(shù)列{an}和等比數(shù)列{bn}均不是常數(shù)列,若a1=b1=1,且a1,2a2,4a4成等比數(shù)列, 4b2,2b3,b4成等差數(shù)列.
(1)求{an}和{bn}的通項(xiàng)公式;
(2)設(shè)m,n是正整數(shù),若存在正整數(shù)i,j,k(i<j<k),使得ambj,amanbi,anbk成等差數(shù)列,求m+n的最小值;
(3)令cn=,記{cn}的前n項(xiàng)和為Tn,{ }的前n項(xiàng)和為An.若數(shù)列{pn}滿足p1=c1,且對(duì)n≥2, n∈N*,都有pn=+Ancn,設(shè){pn}的前n項(xiàng)和為Sn,求證:Sn<4+4lnn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將平面直角坐標(biāo)系的格點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))按如下規(guī)則標(biāo)上數(shù)字標(biāo)簽:原點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,…以此類推:記格點(diǎn)坐標(biāo)為的點(diǎn)(均為正整數(shù))處所標(biāo)的數(shù)字為,若,則 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com