【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,圓.

1)求的取值范圍,并求出圓心坐標(biāo);

2)有一動(dòng)圓的半徑為,圓心在上,若動(dòng)圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

【答案】1的取值范圍為,圓心坐標(biāo)為;(2.

【解析】

1)根據(jù)圓的一般方程得出關(guān)于實(shí)數(shù)的不等式,即可求出實(shí)數(shù)的取值范圍,再利用圓心坐標(biāo)公式可求出圓心坐標(biāo);

2)由題意可知點(diǎn)的坐標(biāo)為,由可知線段的垂直平分線與圓有公共點(diǎn),由此可得出關(guān)于實(shí)數(shù)的不等式,進(jìn)而可求出實(shí)數(shù)的取值范圍.

1)由于方程表示的曲線為圓,則,

解得,所以,實(shí)數(shù)的取值范圍是,圓心的坐標(biāo)為;

2)由于點(diǎn)在直線上,且該點(diǎn)的橫坐標(biāo)為,則點(diǎn)的坐標(biāo)為

可知,點(diǎn)為線段的垂直平分線上一點(diǎn),

且線段的垂直平分線方程為,所以,直線與圓有公共點(diǎn),

由于圓的圓心坐標(biāo)為,半徑為,則有,即,

解得,因此,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),

1)求實(shí)數(shù)的值;

2)若時(shí),函數(shù)的圖像恒在圖像的下方,求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),求函數(shù)上的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)若, , ,使得),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解甲、乙兩校學(xué)生自主招生通過情況,從甲校抽取60人,從乙校抽取50人進(jìn)行分析。

(1)根據(jù)題目條件完成上面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為自主招生通過情況與學(xué)生所在學(xué)校有關(guān);

(2)現(xiàn)已知甲校三人在某大學(xué)自主招生中通過的概率分別為,,用隨機(jī)變量X表示三人在該大學(xué)自主招生中通過的人數(shù),求X的分布列及期望.

參考公式:.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且滿足b2=accosB=

1)求+的值;

2)設(shè)=,求三邊a、b、c的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了加強(qiáng)學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究學(xué)習(xí)的能力,他們以教材第82頁第8題的函數(shù)為基本素材,研究該函數(shù)的相關(guān)性質(zhì),取得部分研究成果如下:

①同學(xué)甲發(fā)現(xiàn):函數(shù)的定義域?yàn)?/span>;

②同學(xué)乙發(fā)現(xiàn):函數(shù)是偶函數(shù);

③同學(xué)丙發(fā)現(xiàn):對(duì)于任意的都有

④同學(xué)丁發(fā)現(xiàn):對(duì)于任意的,都有

⑤同學(xué)戊發(fā)現(xiàn):對(duì)于函數(shù)定義域中任意的兩個(gè)不同實(shí)數(shù),總滿足.

其中所有正確研究成果的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一位幼兒園老師給班上kk≥3)個(gè)小朋友分糖果.她發(fā)現(xiàn)糖果盒中原有糖果數(shù)為a0,就先從別處抓2塊糖加入盒中,然后把盒內(nèi)糖果的分給第一個(gè)小朋友;再從別處抓2塊糖加入盒中,然后把盒內(nèi)糖果的分給第二個(gè)小朋友;,以后她總是在分給一個(gè)小朋友后,就從別處抓2塊糖放入盒中,然后把盒內(nèi)糖果的分給第nn=1,23,k)個(gè)小朋友.如果設(shè)分給第n個(gè)小朋友后(未加入2塊糖果前)盒內(nèi)剩下的糖果數(shù)為an

1)當(dāng)k=3a0=12時(shí),分別求a1,a2,a3;

2)請(qǐng)用an-1表示an;令bn=n+1an,求數(shù)列{bn}的通項(xiàng)公式;

3)是否存在正整數(shù)kk≥3)和非負(fù)整數(shù)a0,使得數(shù)列{an}nk)成等差數(shù)列,如果存在,請(qǐng)求出所有的ka0,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程, ,分別求滿足下列條件實(shí)數(shù)的取值范圍:

1)有解;

2)有唯一解;

3)有兩個(gè)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于實(shí)數(shù)符號(hào)表示不超過x的最大整數(shù),例如定義函數(shù)則下列命題正確中的是__________

1)函數(shù)的最大值為1;

2)函數(shù)是增函數(shù);

3)方程有無數(shù)個(gè)根;

4)函數(shù)的最小值為0.

查看答案和解析>>

同步練習(xí)冊(cè)答案