【題目】設(shè)是數(shù)列的前項(xiàng)和,對(duì)任意都有成立(其中是常數(shù)).

1)當(dāng)時(shí),求

2)當(dāng)時(shí),

①若,求數(shù)列的通項(xiàng)公式:

②設(shè)數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱(chēng)該數(shù)列是數(shù)列,如果,試問(wèn):是否存在數(shù)列數(shù)列,使得對(duì)任意,都有,且,若存在,求數(shù)列的首項(xiàng)的所有取值構(gòu)成的集合;若不存在.說(shuō)明理由.

【答案】12)①②存在,首項(xiàng)所有取值構(gòu)成的集合為。

【解析】

1)當(dāng)時(shí),得到,進(jìn)而得到,兩式作差,得到數(shù)列為等比數(shù)列,即可求解

2)①時(shí),,進(jìn)而得到,兩式作差,得到數(shù)列為等差數(shù)列,即可求解

②確定數(shù)列的通項(xiàng),利用是“數(shù)列”,得到是偶數(shù),從而可得,再利用條件,驗(yàn)證,即可求解數(shù)列的首項(xiàng)的所有取值

1)由題意,當(dāng)時(shí),得到,

代替,可得,

兩式相減,可得,即,即,

,可得,解答

所以數(shù)列是以1為首項(xiàng),公比為3的等比數(shù)列,

所以

2)①當(dāng)時(shí),,

代替,可得,

兩式相減可得,

代替,可得,

兩式相減,可得,即

,所以數(shù)列為等差數(shù)列,

因?yàn)?/span>,可得

又由,解得

所以數(shù)列的通項(xiàng)公式為

②由①知數(shù)列是等差數(shù)列,因?yàn)?/span>,所以

又由是“封閉數(shù)列”,可得:

對(duì)任意,必存在,使得,

解得,所以為偶數(shù),

又由已知,可得,所以,

i)當(dāng)時(shí),,

對(duì)于任意,都有,

ii)當(dāng)時(shí),,則,

,

,則,不合題意;

當(dāng)時(shí),,則,

,符合題意;

當(dāng)時(shí),,則,

所以,

又由,

所以,

所以首項(xiàng)所有取值構(gòu)成的集合為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富學(xué)生活動(dòng),在體育課上,體育教師設(shè)計(jì)了一個(gè)游戲,讓甲、乙、丙三人各抓住橡皮帶的一端,甲站在直角斜邊的中點(diǎn)處,乙站在處,丙站在.游戲開(kāi)始,甲不動(dòng),乙、丙分別以的速度同時(shí)出發(fā),勻速跑向終點(diǎn),運(yùn)動(dòng)過(guò)程中繃緊的橡皮帶圍成一個(gè)如圖所示的.(規(guī)定:只要有一人跑到終點(diǎn),游戲就結(jié)束,且.已知長(zhǎng)為,長(zhǎng)為,記經(jīng)過(guò)的面積為.

1)求關(guān)于的函數(shù)表示,并求出的取值范圍;

2)當(dāng)游戲進(jìn)行到時(shí),體育教師宣布停止,求此時(shí)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的極值;

(2)對(duì),不等式都成立,求整數(shù)k的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的偶函數(shù),滿(mǎn)足,當(dāng)時(shí),,若,,則,的大小關(guān)系為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足:①);②當(dāng))時(shí),;③當(dāng))時(shí),,記數(shù)列的前項(xiàng)和為.

1)求,的值;

2)若,求的最小值;

3)求證:的充要條件是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省普通高中學(xué)業(yè)水平考試成績(jī)按人數(shù)所占比例依次由高到低分為,,,,五個(gè)等級(jí),等級(jí),等級(jí),等級(jí),,等級(jí)共.其中等級(jí)為不合格,原則上比例不超過(guò).該省某校高二年級(jí)學(xué)生都參加學(xué)業(yè)水平考試,先從中隨機(jī)抽取了部分學(xué)生的考試成績(jī)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如圖所示.若該校高二年級(jí)共有1000名學(xué)生,則估計(jì)該年級(jí)拿到級(jí)及以上級(jí)別的學(xué)生人數(shù)有(

A.45B.660C.880D.900

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】安徽懷遠(yuǎn)石榴(Punicagranatum)自古就有九州之奇樹(shù),天下之名果的美稱(chēng),今年又喜獲豐收.懷遠(yuǎn)一中數(shù)學(xué)興趣小組進(jìn)行社會(huì)調(diào)查,了解到某石榴合作社為了實(shí)現(xiàn)萬(wàn)元利潤(rùn)目標(biāo),準(zhǔn)備制定激勵(lì)銷(xiāo)售人員的獎(jiǎng)勵(lì)方案:在銷(xiāo)售利潤(rùn)超過(guò)萬(wàn)元時(shí),按銷(xiāo)售利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且獎(jiǎng)金(單位:萬(wàn)元)隨銷(xiāo)售利潤(rùn)(單位:萬(wàn)元)的增加而增加,但獎(jiǎng)金總數(shù)不超過(guò)萬(wàn)元,同時(shí)獎(jiǎng)金不能超過(guò)利潤(rùn)的.同學(xué)們利用函數(shù)知識(shí),設(shè)計(jì)了如下函數(shù)模型,其中符合合作社要求的是( )(參考數(shù)據(jù):

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次電影展,有14部參賽影片,組委會(huì)分兩天在某一影院播映這14部電影,每天7部,其中有24D電影要求不在同一天放映,下列不能作為排片方案數(shù)的計(jì)算式的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)又本垂直于軸,與橢圓交于兩點(diǎn),點(diǎn)在直線上,.

1)求點(diǎn)的軌跡的方程;

2)直線與橢圓相交于,與曲線相切于點(diǎn),為坐標(biāo)原點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案