【題目】甲、乙、丙三名乒乓球手進(jìn)行單打?qū)贡荣,每(jī)扇吮荣愐粓?chǎng),共賽三場(chǎng),每場(chǎng)比賽勝者得3分,負(fù)者得0分,在每一場(chǎng)比賽中,甲勝乙的概率為,丙勝甲的概率為,乙勝丙的概率為,且各場(chǎng)比賽結(jié)果互不影響.若甲獲第一名且乙獲第三名的概率為.
(1)求的值;
(2)設(shè)在該次對(duì)抗比賽中,丙得分為,求的分布列、數(shù)學(xué)期望和方差.
【答案】(1)(2)詳見(jiàn)解析
【解析】
(1)由已知,甲獲第一名且乙獲第三名的概率為,即甲勝乙、甲勝丙且丙勝乙概率為,利用相互獨(dú)立事件的概率計(jì)算公式即可得出.
(2)依題意丙得分X可以為0,3,6,丙勝甲的概率為,丙勝乙的概率為,利用相互獨(dú)立事件、互斥事件的概率計(jì)算公式即可得出概率、分布列、數(shù)學(xué)期望和方差.
(1)由已知,甲獲第一名且乙獲第三名的概率為,
即甲勝乙、甲勝丙且丙勝乙概率為,
∴,∴.
(2)依題意丙得分可以為0,3,6,丙勝甲的概率為,丙勝乙的概率為,
,,
0 | 3 | 6 | |
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)的動(dòng)圓恒與軸相切,為該圓的直徑,設(shè)點(diǎn)的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)過(guò)點(diǎn)的任意直線(xiàn)與曲線(xiàn)交于點(diǎn),為的中點(diǎn),過(guò)點(diǎn)作軸的平行線(xiàn)交曲線(xiàn)于點(diǎn),關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為,除以外,直線(xiàn)與是否有其它公共點(diǎn)?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)動(dòng)圓經(jīng)過(guò)點(diǎn),且與圓為圓心)相內(nèi)切.
(Ⅰ)求動(dòng)圓圓心的軌跡的方程;
(Ⅱ)設(shè)經(jīng)過(guò)的直線(xiàn)與軌跡交于、兩點(diǎn),且滿(mǎn)足的點(diǎn)也在軌跡上,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),圓與圓外切于原點(diǎn),且兩圓圓心的距離,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓和圓的極坐標(biāo)方程;
(2)過(guò)點(diǎn)的直線(xiàn),與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn),,與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn),,且,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)已知圓C過(guò)點(diǎn)P(1,1),且與圓M:關(guān)于直線(xiàn)對(duì)稱(chēng).
(1)求圓C的方程:
(2)設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求最小值;
(3)過(guò)點(diǎn)P作兩條相異直線(xiàn)分別與圓C交與A,B,且直線(xiàn)PA和直線(xiàn)PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線(xiàn)OP與直線(xiàn)AB是否平行?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)橢圓的四個(gè)頂點(diǎn)與坐標(biāo)軸垂直的四條直線(xiàn)圍成的矩形(是第一象限內(nèi)的點(diǎn))的面積為,且過(guò)橢圓的右焦點(diǎn)的傾斜角為的直線(xiàn)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)若射線(xiàn)與橢圓的交點(diǎn)分別為.當(dāng)它們的斜率之積為時(shí),試問(wèn)的面積是否為定值?若為定值,求出此定值;若不為定值,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用水量 | [0,0.1) | [0.1,0.2) | [0.2,0.3) | [0.3,0.4) | [0.4,0.5) | [0.5,0.6) | [0.6,0.7) |
頻數(shù) | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用 水量 | [0,0.1) | [0.1,0.2) | [0.2,0.3) | [0.3,0.4) | [0.4,0.5) | [0.5,0.6) |
頻數(shù) | 1 | 5 | 13 | 10 | 16 | 5 |
(1)作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖;
(2)估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.3的概率;
(3)估計(jì)該家庭用節(jié)水龍頭后,一年能節(jié)省多少水.(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com