【題目】已知橢圓的左、右焦點分別為、,且,橢圓經(jīng)過點.
(1)求橢圓的方程;
(2)直線過橢圓右頂點,交橢圓于另一點,點在直線上,且.若,求直線的斜率.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.
(1)寫出曲線的普通方程和直線的直角坐標方程;
(2)若直線與曲線相交于、兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點.
(1)寫出曲線C的直角坐標方程和直線l的普通方程;
(2)若點P的極坐標為,,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“中國式過馬路”存在很大的交通安全隱患,某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如圖的列聯(lián)表.已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.
(1)求列聯(lián)表中的,的值;
男性 | 女性 | 合計 | |
反感 | 10 | ||
不反感 | 8 | ||
合計 | 30 |
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),判斷是否有95%把握認為反感“中國式過馬路”與性別有關?
臨界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
參考公式:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù)有下述四個結論:
①的周期為;
②在上單調遞增;
③函數(shù)在上有個零點;
④函數(shù)的最小值為.
其中所有正確結論的編號為( )
A.①②B.②③C.③④D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()的一個焦點為,點在C上.
(1)求橢圓C的方程;
(2)過點且斜率不為0的直線l與橢圓C相交于M,N兩點,橢圓長軸的兩個端點分別為,,與相交于點Q,求證:點Q在某條定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《烏鴉喝水》是《伊索寓言》中一個寓言故事。通過講述一只烏鴉喝水的故事,告訴人們遇到困難要運用智慧、認真思考才能讓問題迎刃而解的道理。如圖2所示,烏鴉想喝水,發(fā)現(xiàn)有一個錐形瓶,上面部分是圓柱體,下面部分是圓臺,瓶口直徑為3厘米,瓶底直徑為9厘米,瓶口距瓶頸為厘米,瓶頸到水位線距離和水位線到瓶底距離均為厘米現(xiàn)將1顆石子投入瓶中,發(fā)現(xiàn)水位線上移厘米,若只有當水位線到達瓶口時,烏鴉才能喝到水,則烏鴉共需要投入的石子數(shù)量至少是?(石子體積均視為一致)
圓臺體積公式:,其中,為圓臺高,為圓臺下底面半徑,為圓臺上底面半徑( )
A.2顆B.3顆C.4顆D.5顆
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com