【題目】已知橢圓C)的一個(gè)焦點(diǎn)為,點(diǎn)C.

1)求橢圓C的方程;

2)過點(diǎn)且斜率不為0的直線l與橢圓C相交于MN兩點(diǎn),橢圓長軸的兩個(gè)端點(diǎn)分別為,,相交于點(diǎn)Q,求證:點(diǎn)Q在某條定直線上.

【答案】1;(2)證明見解析.

【解析】

1)橢圓C的兩焦點(diǎn)分別為,由,可求得的值,結(jié)合橢圓的定義,可求得的值,再結(jié)合,可求出的值,進(jìn)而可得到橢圓C的方程;

2)設(shè)l方程為,聯(lián)立,消去得到關(guān)于的一元二次方程,設(shè),,可表示出、的方程,聯(lián)立兩直線方程,并結(jié)合韋達(dá)定理,可證明點(diǎn)Q在某條定直線上.

1)依題意,橢圓C的兩焦點(diǎn)分別為,

所以,即

,所以

故橢圓C的方程為.

2)設(shè),l的方程為,

聯(lián)立,得,

設(shè),則,

,.

的方程為,的方程為,

聯(lián)立兩直線方程得,

,

因?yàn)?/span>,所以,

整理得.

故點(diǎn)Q在定直線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為我國數(shù)學(xué)家趙爽3世紀(jì)初在為《周髀算經(jīng)》作注時(shí)驗(yàn)證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個(gè)小區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,則區(qū)域涂色不相同的概率為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,且,橢圓經(jīng)過點(diǎn).

1)求橢圓的方程;

2)直線過橢圓右頂點(diǎn),交橢圓于另一點(diǎn),點(diǎn)在直線上,且.,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形為直角梯形,,,,上一點(diǎn),的中點(diǎn),且,,現(xiàn)將梯形沿折疊(如圖2),使平面平面.

1)求證:平面平面.

2)能否在邊上找到一點(diǎn)(端點(diǎn)除外)使平面與平面所成角的余弦值為?若存在,試確定點(diǎn)的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機(jī)會,通過隨機(jī)抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:

組別

2

3

5

15

18

12

0

5

10

10

7

13

(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?

(2)若問卷得分不低于80分的人稱為“環(huán)保達(dá)人”.視頻率為概率.

①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;

②為了鼓勵(lì)市民關(guān)注環(huán)保,針對此次的調(diào)查制定了如下獎(jiǎng)勵(lì)方案:“環(huán)保達(dá)人”獲得兩次抽獎(jiǎng)活動;其他參與的市民獲得一次抽獎(jiǎng)活動.每次抽獎(jiǎng)獲得紅包的金額和對應(yīng)的概率.如下表:

紅包金額(單位:元)

10

20

概率

現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國大學(xué)先修課程,是在高中開設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來的職業(yè)生涯做好準(zhǔn)備.某高中開設(shè)大學(xué)先修課程已有兩年,兩年共招收學(xué)生2000人,其中有300人參與學(xué)習(xí)先修課程,兩年全校共有優(yōu)等生200人,學(xué)習(xí)先修課程的優(yōu)等生有60人.這兩年學(xué)習(xí)先修課程的學(xué)生都參加了考試,并且都參加了某高校的自主招生考試(滿分100分),結(jié)果如下表所示:

分?jǐn)?shù)

人數(shù)

20

55

105

70

50

參加自主招生獲得通過的概率

0.9

0.8

0.6

0.5

0.4

(1)填寫列聯(lián)表,并畫出列聯(lián)表的等高條形圖,并通過圖形判斷學(xué)習(xí)先修課程與優(yōu)等生是否有關(guān)系,根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?

優(yōu)等生

非優(yōu)等生

總計(jì)

學(xué)習(xí)大學(xué)先修課程

沒有學(xué)習(xí)大學(xué)先修課程

總計(jì)

(2)已知今年有150名學(xué)生報(bào)名學(xué)習(xí)大學(xué)先修課程,以前兩年參加大學(xué)先修課程學(xué)習(xí)成績的頻率作為今年參加大學(xué)先修課程學(xué)習(xí)成績的概率.

①在今年參與大學(xué)先修課程的學(xué)生中任取一人,求他獲得某高校自主招生通過的概率;

②設(shè)今年全校參加大學(xué)先修課程的學(xué)生獲得某高校自主招生通過的人數(shù)為,求.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019101日,慶祝中華人民共和國成立70周年大會、閱兵式、群眾游行在北京隆重舉行,這次閱兵編59個(gè)方(梯)隊(duì)和聯(lián)合軍樂團(tuán),總規(guī)模約1.5萬人,各型飛機(jī)160余架、裝備580余套,是近幾次閱兵中規(guī)模最大的一次.某機(jī)構(gòu)統(tǒng)計(jì)了觀看此次閱兵的年齡在30歲至80歲之間的100個(gè)觀眾,按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)求的值及這100個(gè)人的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

2)用分層抽樣的方法在年齡為、的人中抽取5人,再從抽取的5人中隨機(jī)抽取2人接受采訪,求接受采訪的2人中年齡在的恰有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,分別為雙曲線的左、右焦點(diǎn),點(diǎn)P是以為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線段的中點(diǎn)QC的漸近線上,則C的兩條漸近線方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)為曲線上的動點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線上,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案