【題目】兩人約定在20∶00到21∶00之間相見,并且先到者必須等遲到者40分鐘方可離去,如果兩人出發(fā)是各自獨(dú)立的,在20∶00至21∶00各時(shí)刻相見的可能性是相等的,則他們兩人在約定時(shí)間內(nèi)相見的概率為( ).
A. B. C. D.
【答案】A
【解析】
由題意設(shè)事件A為“甲乙兩人能會(huì)面”,求出試驗(yàn)包含的所有事件,并且事件對(duì)應(yīng)的集合表示的面積是s=1,再求出滿足條件的事件,并且得到事件對(duì)應(yīng)的集合表示的面積是 ,進(jìn)而根據(jù)幾何概率模型的計(jì)算公式可得答案.
由題意知本題是一個(gè)幾何概型,設(shè)事件A為“甲乙兩人能會(huì)面”,
試驗(yàn)包含的所有事件是Ω={(x,y)|},并且事件對(duì)應(yīng)的集合表示的面積是s=1,
滿足條件的事件是A={(x,y)|,|x﹣y|}
所以事件對(duì)應(yīng)的集合表示的面積是1﹣2,
根據(jù)幾何概型概率公式得到P.
則兩人在約定時(shí)間內(nèi)能相見的概率是.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點(diǎn),在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆,唐三彩的生產(chǎn)至今已有1300多年的歷史,對(duì)唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史。某陶瓷廠在生產(chǎn)過程中,對(duì)仿制的100件工藝品測(cè)得其重量(單位; )數(shù)據(jù),將數(shù)據(jù)分組如下表:
分組 | 頻數(shù) | 頻率 |
4 | ||
26 | ||
28 | ||
10 | ||
2 | ||
合計(jì) | 100 |
(1)在答題卡上完成頻率分布表;
(2)以表中的頻率作為概率,估計(jì)重量落在中的概率及重量小于2.45的概率是多少?
(3)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值是作為代表.據(jù)此,估計(jì)這100個(gè)數(shù)據(jù)的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》第三章“衰分”介紹了比例分配問題,“衰分”是按比例遞減分配的意思,通常稱遞減的比例為“衰分比”.如:已知三人分配獎(jiǎng)金的衰分比為,若分得獎(jiǎng)金1000元,則所分得獎(jiǎng)金分別為900元和810元.某科研所四位技術(shù)人員甲、乙、丙、丁攻關(guān)成功,共獲得獎(jiǎng)金59040元,若甲、乙、丙、丁按照一定的“衰分比”分配獎(jiǎng)金,且甲與丙共獲得獎(jiǎng)金32800元,則“衰分比”與丙所獲得的獎(jiǎng)金分別為( )
A.,12800元B.,12800元
C.,10240元D.,10240元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓內(nèi)一定點(diǎn),動(dòng)圓過點(diǎn)且與圓內(nèi)切.記動(dòng)圓圓心的軌跡為.
(Ⅰ)求軌跡方程;
(II)過點(diǎn)的動(dòng)直線l交軌跡于M,N兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)Q,使得以線段MN為直徑的圓恒過點(diǎn)Q?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸為非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓的普通方程與極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,求圓上的點(diǎn)到直線的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某橋是拋物線形拱橋,當(dāng)水面在l時(shí),拱頂離水面2 m,水面寬4 m.
(1)水位下降1 m后,計(jì)算水面寬多少米?
(2)已知經(jīng)過上述拋物線焦點(diǎn)且斜率為2的直線交拋物線于A、B兩點(diǎn),求A、B兩點(diǎn)間的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com