【題目】己知p:函數(shù)fx)在R上是增函數(shù),fm2)<fm+2)成立;q:方程1mR)表示雙曲線.

1)若p為真命題,求m的取值范圍;

2)若pq為真,pq為假,求m的取值范圍.

【答案】(1) 1m2(2) (﹣1,0][23).

【解析】

1)根據(jù)增函數(shù)的定義即可求出m的取值范圍

2)由pq為真,pq為假可得有兩種情況:①pq假,②pq

1)己知命題p:函數(shù)fx)在R上是增函數(shù),fm2)<fm+2)成立;

所以m2m+2,解得﹣1m2

2)已知命題q:方程1mR)表示雙曲線.

所以mm3)<0,解得0m3

由于pq為真,pq為假,

所以①pq假,則,解得﹣1m≤0

pq真,則,解得2≤m3,

綜上所述:m的取值范圍是(﹣1,0][2,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),且曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的普通方程和極坐標(biāo)方程;

(2)若曲線上的兩點(diǎn)滿足,過(guò)于點(diǎn),求證:點(diǎn)在以為圓心的定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自201611日起,我國(guó)全面二孩政策正式實(shí)施,這次人口與生育政策的歷史性調(diào)整,使得要不要再生一個(gè),生二孩能休多久產(chǎn)假等問(wèn)題成為千千萬(wàn)萬(wàn)個(gè)家庭在生育決策上避不開(kāi)的話題.為了解針對(duì)產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機(jī)構(gòu)隨機(jī)抽取了200戶有生育二胎能力的適齡家庭進(jìn)行問(wèn)卷調(diào)查,得到如下數(shù)據(jù):

產(chǎn)假安排(單位:周)

14

15

16

17

18

有生育意愿家庭數(shù)

4

8

16

20

26

1)若用表中數(shù)據(jù)所得的頻率代替概率,面對(duì)產(chǎn)假為14周與16周,估計(jì)某家庭有生育意愿的概率分別為多少?

2)假設(shè)從5種不同安排方案中,隨機(jī)抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇.

求兩種安排方案休假周數(shù)和不低于32周的概率;

如果用表示兩種方案休假周數(shù)之和.求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), ,其中R, …為自然對(duì)數(shù)的底數(shù)

)當(dāng)時(shí), 恒成立,求的取值范圍;

)求證: (參考數(shù)據(jù): )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,橢圓的離心率是,的面積是.

1)求橢圓的標(biāo)準(zhǔn)方程.

2)直線與橢圓交于,兩點(diǎn)(異于點(diǎn)),若直線與直線的斜率之和為1,證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:及點(diǎn)P(0,1),過(guò)點(diǎn)P的直線與圓交于AB兩點(diǎn).

(1)若弦長(zhǎng)求直線AB的斜率;

(2)求△ABC面積的最大值,及此時(shí)弦長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,過(guò)點(diǎn)作垂直于軸的直線與拋物線交于,兩點(diǎn),且以線段為直徑的圓過(guò)點(diǎn).

(1)求拋物線的方程;

(2)若直線與拋物線交于兩點(diǎn),點(diǎn)為曲線:上的動(dòng)點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是動(dòng)點(diǎn),以為直徑的圓與圓內(nèi)切.

(1)求的軌跡的方程;

(2)設(shè)是圓軸的交點(diǎn),過(guò)點(diǎn)的直線與交于兩點(diǎn),直線交直線于點(diǎn),求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)若方程有四個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案