【題目】設(shè)函數(shù), ,其中R, …為自然對數(shù)的底數(shù).
(Ⅰ)當時, 恒成立,求的取值范圍;
(Ⅱ)求證: (參考數(shù)據(jù): ).
【答案】(1) (2)見解析
【解析】【試題分析】(1)先構(gòu)造函數(shù),再對其求導(dǎo)得到然后分和兩種情形分類討論進行分析求解:
(2)借助(1)的結(jié)論,當時, 對恒成立, 再令,得到 即; 又由(Ⅰ)知,當時,則在遞減,在遞增,則,即,又,即,令,即,則,
故有.
解:
(Ⅰ)令,則
①若,則, , 在遞增, ,
即在 恒成立,滿足,所以;
②若, 在遞增, 且
且時, ,則使,
則在遞減,在遞增,
所以當時,即當時, ,
不滿足題意,舍去;
綜合①,②知的取值范圍為.
(Ⅱ)由(Ⅰ)知,當時, 對恒成立,
令,則 即;
由(Ⅰ)知,當時,則在遞減,在遞增,
則,即,又,即,
令,即,則,
故有.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=( )2表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標系的原點;
③函數(shù)y=3(x﹣1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④y=2|x|的最小值為1
⑤對于函數(shù)f(x),若f(﹣1)f(3)<0,則方程f(x)=0在區(qū)間[﹣1,3]上有一實根;
其中正確命題的序號是(填上所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是減函數(shù),又f(﹣2)=0,則(x﹣3)f(x)<0的解集是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a≠0,函數(shù)f(x)=
(1)若a=﹣3,求f(10),f(f(10))的值;
(2)若f(1﹣a)=f(1+a),求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程(x2﹣2x+m)(x2﹣2x+n)=0的四個根組成一個首項為 的等差數(shù)列,則|m﹣n|等于( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (a,b是常數(shù),a>0且a≠1)在區(qū)間 上有最大值3,最小值為 .試求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機構(gòu)隨機抽取10名購物者進行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實體店.
(1)若從10名購物者中隨機抽取2名,其中男、女各一名,求至少1名傾向于選擇實體店的概率;
(2)若從這10名購物者中隨機抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且當x>1時,f(x)>0.
(1)判斷函數(shù)f(x)在其定義域(0,+∞)上的單調(diào)性并證明;
(2)解不等式f(x)+f(x﹣2)≤3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若不等式(m﹣1)x2+(m﹣1)x+2>0的解集是R,則m的范圍是( )
A.(1,9)
B.(﹣∞,1]∪(9,+∞)
C.[1,9)
D.(﹣∞,1)∪(9,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com