【題目】如圖,港口在港口的正東120海里處,小島在港口的北偏東的方向,且在港口北偏西的方向上,一艘科學(xué)考察船從港口出發(fā),沿北偏東的方向以20海里/小時(shí)的速度駛離港口.一艘給養(yǎng)快艇從港口以60海里/小時(shí)的速度駛向小島,在島轉(zhuǎn)運(yùn)補(bǔ)給物資后以相同的航速送往科考船.已知兩船同時(shí)出發(fā),補(bǔ)給裝船時(shí)間為1小時(shí).
(1)求給養(yǎng)快艇從港口到小島的航行時(shí)間;
(2)給養(yǎng)快艇駛離港口后,最少經(jīng)過(guò)多少小時(shí)能和科考船相遇?
【答案】(1)快艇從港口到小島的航行時(shí)間為小時(shí)(2)給養(yǎng)快艇駛離港口后,最少經(jīng)過(guò)3小時(shí)能和科考船相遇
【解析】
(1)給養(yǎng)快艇從港口到小島的航行時(shí)間,已知其速度,則只要求得的路程,再利用路程公式即可求得所需的時(shí)間.
(2)由(1)知,給養(yǎng)快艇從港口駛離2小時(shí)后,從小島出發(fā)與科考船匯合,根據(jù)題意確定各邊長(zhǎng)和各角的值,然后由余弦定理解決問(wèn)題.
(1)由題意知,在中,,,,
所以,
于是,
而快艇的速度為海里/小時(shí),
所以快艇從港口到小島的航行時(shí)間為小時(shí).
(2)由(1)知,給養(yǎng)快艇從港口駛離2小時(shí)后,從小島出發(fā)與科考船匯合.為使航行的時(shí)間最少,快艇從小島駛離后必須按直線方向航行,
設(shè)給養(yǎng)快艇駛離港口小時(shí)后恰與科考船在處相遇.
在中,,
而在中,,,,
由余弦定理,得,
即,
化簡(jiǎn),得,
解得或(舍去).
故.
即給養(yǎng)快艇駛離港口后,最少經(jīng)過(guò)3小時(shí)能和科考船相遇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與函數(shù)在點(diǎn)處有公共的切線,設(shè).
(1) 求的值
(2)求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為的正方體中,,分別是和的中點(diǎn).
()求異面直線與所成角的余弦值.
()在棱上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,點(diǎn)為上異于頂點(diǎn)的任意一點(diǎn),過(guò)的直線交于另一點(diǎn),交軸正半軸于點(diǎn),且有,當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),為正三角形.
(1)求的方程;
(2)若直線,且和相切于點(diǎn),試問(wèn)直線是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù).
(I)若,求實(shí)數(shù)的取值范圍;
(II)當(dāng)時(shí),討論方程在上的解的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的公差,首項(xiàng),且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和;
(3)比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的是( )
A. 若為真命題,則為真命題 B. 若則恒成立
C. 命題“”的否定是“” D. 命題“若則”的逆否命題是“若,則”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題:
①“若,則”的逆否命題為真命題
②“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件
③若為假命題,則,均為假命題
④對(duì)于命題:,,則為:,
其中真命題的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的左、右頂點(diǎn)分別為A,B,離心率為,點(diǎn)P(1,)為橢圓上一點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如圖,過(guò)點(diǎn)C(0,1)且斜率大于1的直線l與橢圓交于M,N兩點(diǎn),記直線AM的斜率為k1,直線BN的斜率為k2,若k1=2k2,求直線l斜率的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com