已知b>0,log5b=a,lgb=c,5d=10,則下列等式一定成立的是( 。
A、d=acB、a=cd
C、c=adD、d=a+c
考點:對數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用指數(shù)式與對數(shù)式的互化、對數(shù)的運算性質(zhì)和換底公式即可得出.
解答: 解:由5d=10,可得d=
1
lg5
,
∴cd=lgb
1
lg5
=log5b=a.
故選:B.
點評:本題考查了指數(shù)式與對數(shù)式的互化、對數(shù)的運算性質(zhì)和換底公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
=(1,2),
b
=(4,2),
c
=m
a
+
b
(m∈R),且
c
a
的夾角等于
c
b
的夾角,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面上一機器人在行進中始終保持與點F(1,0)的距離和到直線x=-1的距離相等,若機器人接觸不到過點P(-1,0)且斜率為k的直線,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點O為線段BD的中點,設(shè)點P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是( 。
A、[
3
3
,1]
B、[
6
3
,1]
C、[
6
3
,
2
2
3
]
D、[
2
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
2
個單位長度,所得圖象對應(yīng)的函數(shù)( 。
A、在區(qū)間[
π
12
,
12
]上單調(diào)遞減
B、在區(qū)間[
π
12
12
]上單調(diào)遞增
C、在區(qū)間[-
π
6
π
3
]上單調(diào)遞減
D、在區(qū)間[-
π
6
π
3
]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|x≤0},B={x|x≥1},則集合∁U(A∪B)=( 。
A、{x|x≥0}
B、{x|x≤1}
C、{x|0≤x≤1}
D、{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1+3i
1-i
=( 。
A、1+2iB、-1+2i
C、1-2iD、-1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-a)2+(y-b)2=1,設(shè)平面區(qū)域Ω=
x+y-7≤0
x-y+3≥0
y≥0
,若圓心C∈Ω,且圓C與x軸相切,則a2+b2的最大值為( 。
A、5B、29C、37D、49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2+bx+b)
1-2x
(b∈R)
(1)當(dāng)b=4時,求f(x)的極值;
(2)若f(x)在區(qū)間(0,
1
3
)上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案