【題目】設數(shù)列的各項都是正數(shù),且對于任意都有,記為數(shù)列的前項和.
(1)計算的值;
(2)求數(shù)列的通項公式;
(3)設,若為單調(diào)遞增數(shù)列,求的取值范圍.
【答案】(1),,;(2);(3).
【解析】
(1)代入,可得,從而求得;代入得,可求得;代入,可得,可求得;
(2)將兩式作差整理可得;根據(jù)可整理得,進而得到,可知數(shù)列為等差數(shù)列,根據(jù)等差數(shù)列通項公式求得結(jié)果;
(3)將問題轉(zhuǎn)化為恒成立,則只需;分別在為奇數(shù)和為偶數(shù)兩種情況下得到和恒成立,通過求得右側(cè)的最小值和最大值求得的范圍.
(1)當時,,又各項均為正數(shù)
當時,,即,解得:
當時,,即,解得:
(2)由(1)知,當時,
當且時,……①
……②
①②得:
…③,則…④
③④得:
數(shù)列是以為首項,為公差的等差數(shù)列
(3)由(2)知:
若為單調(diào)增數(shù)列,則恒成立
即
只需
①當為奇數(shù)時,只需恒成立
當時,的最小值為
②當為偶數(shù)時,只需
當時,的最大值為
綜上所述:的取值范圍為
科目:高中數(shù)學 來源: 題型:
【題目】自由購是一種通過自助結(jié)算購物的形式.某大型超市為調(diào)查顧客自由購的使用情況,隨機抽取了100人,調(diào)查結(jié)果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)現(xiàn)隨機抽取1名顧客,試估計該顧客年齡在且未使用自由購的概率;
(Ⅱ)從被抽取的年齡在使用的自由購顧客中,隨機抽取2人進一步了解情況,求這2人年齡都在的概率;
(Ⅲ)為鼓勵顧客使用自由購,該超市擬對使用自由購顧客贈送1個環(huán)保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環(huán)保購物袋?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在實數(shù),使得為上的奇函數(shù),則稱是位差值為的“位差奇函數(shù)”.
(1)判斷函數(shù)和是否為位差奇函數(shù)?說明理由;
(2)若是位差值為的位差奇函數(shù),求的值;
(3)若對任意屬于區(qū)間中的都不是位差奇函數(shù),求實數(shù)、滿足的條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中,,,四邊形為矩形,且平面,.
(1)求證:平面;
(2)點在線段上運動,當點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中,,,的前項和為,且滿足().
(1)試求數(shù)列的通項公式;
(2)令,是的前項和,證明:;
(3)證明:對任意給定的,均存在,使得時,(2)中的恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的定義域為,其圖象上任一點都滿足.
①函數(shù)一定是偶函數(shù);②函數(shù)可能既不是偶函數(shù)也不是奇函數(shù);
③函數(shù)若是偶函數(shù),則值域是或;④函數(shù)可以是奇函數(shù);
⑤函數(shù)的值域是,則一定是奇函數(shù).
其中正確命題的序號是__________(填上所有正確的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4—4:坐標系與參數(shù)方程]:在直角坐標系中,直線的參數(shù)方程為(t為參數(shù),),以坐標原點為極點,以x軸的非負半軸為極軸,建立極坐標系,曲線C的極坐標方程為,已知直線與曲線C交于不同的兩點A,B.
(1)求直線的普通方程和曲線C的直角坐標方程;
(2)設P(1,2),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項均為正數(shù)的數(shù)列的前項和為且滿足:
(1)求數(shù)列的通項公式;
(2)設求的值;
(3)是否存在大于2的正整數(shù)使得?若存在,求出所有符合條件的若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com