【題目】中國古代數(shù)學名著《九章算術》中的“蒲莞生長”是一道名題根據(jù)該問題我們改編一題:今有蒲草第一天長為三尺,莞草第一天長為一尺,以后蒲草的生長長度遂天減半,莞草的生長長度逐天加倍,現(xiàn)問幾天后莞草的長度是蒲草的長度的兩倍,以下給出了問題的四個解,其精確度最高的是(結果保留一位小數(shù),參考數(shù)據(jù):lg2≈0.30,lg3≈0.48)( )
A.2.6日B.3.0日C.3.6日D.4.0日
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是半圓的直徑,是半圓上除點外的一個動點,垂直于所在的平面,垂足為,,且,.
(1)證明:平面平面;
(2)當為半圓弧的中點時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年1月18日,國家禁毒辦召開視頻會議,部署開展全國禁毒示范城市創(chuàng)建活動,會上,貴陽成功入選為首批全國101個示范創(chuàng)建城市之一.為進一步推進創(chuàng)建工作的開展,貴陽市教育局全面部署了各中小學深入學習禁毒知識的工作.某校據(jù)此開展相關禁毒知識測試活動,如圖的莖葉圖是該校從甲、乙兩個班級各隨機抽取5名同學在一次禁毒知識測試中的成績統(tǒng)計
(1)請從統(tǒng)計學角度分析兩個班級的同學在禁毒知識學習上的狀況;
(2)由于測試難度較大,測試成績達到87分以上(含87分)者即視為合格,先從莖葉圖中達到合格的同學中抽取三人進行成績分析,試求抽取到的同學中至少有兩人來自甲班的概率;
(3)已知本次測試的成績服從正態(tài)分布,該校共有1000名同學參加了測試,求測試成績在86分到97分之間的人數(shù).
(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校在學期結束,為了解家長對學校工作的滿意度,對兩個班的100位家長進行滿意度調(diào)查,調(diào)查結果如下:
非常滿意 | 滿意 | 合計 | |
A | 30 | 15 | 45 |
B | 45 | 10 | 55 |
合計 | 75 | 25 | 100 |
(1)根據(jù)表格判斷是否有的把握認為家長的滿意程度與所在班級有關系?
(2)用分層抽樣的方法從非常滿意的家長中抽取5人進行問卷調(diào)查,并在這5人中隨機選出2人進行座談,求這2人都來自同一班級的概率?
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方形ABCD,E,F分別為AB,CD的中點,將△ADE沿DE折起,使△ACD為等邊三角形,如圖所示,記二面角A-DE-C的大小為.
(1)證明:點A在平面BCDE內(nèi)的射影G在直線EF上;
(2)求角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,△DAB≌△DCB,E為線段BD上的點,且EA=EB=ED=AB,延長CE交AD于點F.
(1)若G為PD的中點,求證平面PAD⊥平面CGF;
(2)若AD=AP=6,求平面BCP與平面DCP所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某美術學院2018年在山西招生,報名人數(shù)很多.工作人員在某個市區(qū)抽取了該區(qū)2018年美術招生考試成績中200名學生的色彩和素描的初試成績,按成績分組,得到的頻率分布表如下圖所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 24 | 0.12 | |
第2組 | ① | 0.18 | |
第3組 | 64 | 0.32 | |
第4組 | 60 | ② | |
第5組 | 16 | 0.08 | |
合計 | 200 | 1.00 |
(1)請先求出頻率分布表中①、②位置相應數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖,并由頻率分布直方圖估算中位數(shù);
(2)為了能更清楚地了解該市學生的情況,該美院決定在復試以前先進行抽樣調(diào)研.但受場地和教授人數(shù)的客觀限制,決定從第3組選出3人,第4組選出2人,第5組選出1人,然后從這6人中再選出2人進行調(diào)研,求這2人均來自第三組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式|x﹣1|+|2x+1|<3的解集為{x|a<x<b};
(1)求a,b的值;
(2)若正實數(shù)x,y滿足x+y=ab+2且不等式(yc2﹣4)x+(8cx﹣1)y≤0對任意的x,y恒成立,求實數(shù)c的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣4x2+5x﹣4.
(1)求曲線f(x)在點(2,f(2))處的切線方程:
(2)若g(x)=f(x)+k,求g(x)的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com